短信:标志可以保存-使用CNN的交通标志识别和检测

Praveen Tumuluru, Lakshmi Burra, N. Sunanda, Shaik Sharez Hussain, Dudipalli Madhu, Hasthi Venkat Varma
{"title":"短信:标志可以保存-使用CNN的交通标志识别和检测","authors":"Praveen Tumuluru, Lakshmi Burra, N. Sunanda, Shaik Sharez Hussain, Dudipalli Madhu, Hasthi Venkat Varma","doi":"10.1109/ICECA55336.2022.10009638","DOIUrl":null,"url":null,"abstract":"Traffic sign classification automatically detects roadside traffic signs, such as speed limit signs, yield signs, etc. Automatically recognizing traffic signs enables the development of “smarter automobiles.” Self-driving automobiles require traffic sign recognition to interpret and comprehend the roadway accurately. Similarly, “driver alert” systems within cars must understand the surrounding roadway to assist and protect drivers. Our automation would assist drivers in detecting and identifying traffic signs without distracting them from the road. With convolution neural networks, the signboards can be accurately classified. The precision can be improved by adding more layers. The GTSRB dataset is utilized here for training and testing; by fine-tuning the parameters, the 43 types of traffic signs are categorized accurately, and the detection speed also increases.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SMS: SIGNS MAY SAVE – Traffic Sign Recognition and Detection using CNN\",\"authors\":\"Praveen Tumuluru, Lakshmi Burra, N. Sunanda, Shaik Sharez Hussain, Dudipalli Madhu, Hasthi Venkat Varma\",\"doi\":\"10.1109/ICECA55336.2022.10009638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic sign classification automatically detects roadside traffic signs, such as speed limit signs, yield signs, etc. Automatically recognizing traffic signs enables the development of “smarter automobiles.” Self-driving automobiles require traffic sign recognition to interpret and comprehend the roadway accurately. Similarly, “driver alert” systems within cars must understand the surrounding roadway to assist and protect drivers. Our automation would assist drivers in detecting and identifying traffic signs without distracting them from the road. With convolution neural networks, the signboards can be accurately classified. The precision can be improved by adding more layers. The GTSRB dataset is utilized here for training and testing; by fine-tuning the parameters, the 43 types of traffic signs are categorized accurately, and the detection speed also increases.\",\"PeriodicalId\":356949,\"journal\":{\"name\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA55336.2022.10009638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

交通标志分类自动检测路边交通标志,如限速标志、让行标志等。自动识别交通标志使“智能汽车”得以发展。自动驾驶汽车需要交通标志识别来准确地解释和理解道路。同样,汽车内的“驾驶员警报”系统必须了解周围的道路,以协助和保护驾驶员。我们的自动化系统将帮助司机在不分散他们注意力的情况下发现和识别交通标志。利用卷积神经网络可以准确地对标识进行分类。增加更多的层可以提高精度。这里使用GTSRB数据集进行训练和测试;通过对参数的微调,对43种交通标志进行了准确的分类,提高了检测速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMS: SIGNS MAY SAVE – Traffic Sign Recognition and Detection using CNN
Traffic sign classification automatically detects roadside traffic signs, such as speed limit signs, yield signs, etc. Automatically recognizing traffic signs enables the development of “smarter automobiles.” Self-driving automobiles require traffic sign recognition to interpret and comprehend the roadway accurately. Similarly, “driver alert” systems within cars must understand the surrounding roadway to assist and protect drivers. Our automation would assist drivers in detecting and identifying traffic signs without distracting them from the road. With convolution neural networks, the signboards can be accurately classified. The precision can be improved by adding more layers. The GTSRB dataset is utilized here for training and testing; by fine-tuning the parameters, the 43 types of traffic signs are categorized accurately, and the detection speed also increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Artificial Flora Algorithm Based Optimal Handover Scheme for LTE-Advanced Networks Named Entity Recognition using CRF with Active Learning Algorithm in English Texts FPGA Implementation of Lattice-Wave Half-Order Digital Integrator using Radix-$2^{r}$ Digit Recoding Green Cloud Computing- Next Step Towards Eco-friendly Work Stations Diabetes Prediction using Support Vector Machine, Naive Bayes and Random Forest Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1