数据中心网络中的任务感知TCP

Sen Liu, Jiawei Huang, Yutao Zhou, Jianxin Wang, T. He
{"title":"数据中心网络中的任务感知TCP","authors":"Sen Liu, Jiawei Huang, Yutao Zhou, Jianxin Wang, T. He","doi":"10.1109/ICDCS.2017.175","DOIUrl":null,"url":null,"abstract":"In modern data centers, many flow-based and task-based schemes have been proposed to speed up the data transmission in order to provide fast, reliable services for millions of users. However, existing flow-based schemes treat all flows in isolation, contributing less to or even hurting user experience due to the stalled flows. Other prevalent task-based approaches, such as centralized and decentralized scheduling, are sophisticated or unable to share task information. In this work, we first reveal that relinquishing bandwidth of leading flows to the stalled ones effectively reduces the task completion time. We further present the design and implementation of a general supporting scheme that shares the flow-tardiness information through a receiver-driven coordination. Our scheme can be flexibly and widely integrated with the state-of-the-art TCP protocols designed for data centers, while making no modification on switches. Through the testbed experiments and simulations of typical data center applications, we show that our scheme reduces the task completion time by 70% and 50% compared with the flow-based protocols (e.g. DCTCP, L2DCT) and task-based scheduling (e.g. Baraat), respectively. Moreover, our scheme also outperforms other approaches by 18% to 25% in prevalent topologies of data center.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Task-aware TCP in Data Center Networks\",\"authors\":\"Sen Liu, Jiawei Huang, Yutao Zhou, Jianxin Wang, T. He\",\"doi\":\"10.1109/ICDCS.2017.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern data centers, many flow-based and task-based schemes have been proposed to speed up the data transmission in order to provide fast, reliable services for millions of users. However, existing flow-based schemes treat all flows in isolation, contributing less to or even hurting user experience due to the stalled flows. Other prevalent task-based approaches, such as centralized and decentralized scheduling, are sophisticated or unable to share task information. In this work, we first reveal that relinquishing bandwidth of leading flows to the stalled ones effectively reduces the task completion time. We further present the design and implementation of a general supporting scheme that shares the flow-tardiness information through a receiver-driven coordination. Our scheme can be flexibly and widely integrated with the state-of-the-art TCP protocols designed for data centers, while making no modification on switches. Through the testbed experiments and simulations of typical data center applications, we show that our scheme reduces the task completion time by 70% and 50% compared with the flow-based protocols (e.g. DCTCP, L2DCT) and task-based scheduling (e.g. Baraat), respectively. Moreover, our scheme also outperforms other approaches by 18% to 25% in prevalent topologies of data center.\",\"PeriodicalId\":127689,\"journal\":{\"name\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2017.175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在现代数据中心中,为了为数百万用户提供快速、可靠的服务,提出了许多基于流和基于任务的方案来加快数据传输速度。然而,现有的基于流的方案孤立地对待所有流,由于流的停滞,对用户体验的贡献较小,甚至损害用户体验。其他流行的基于任务的方法,如集中式和分散式调度,都很复杂,或者无法共享任务信息。在这项工作中,我们首先揭示了将领先流的带宽让给停滞流可以有效地减少任务完成时间。我们进一步提出了一个通用支持方案的设计和实现,该方案通过接收器驱动的协调共享流延迟信息。我们的方案可以灵活和广泛地集成为数据中心设计的最先进的TCP协议,而不需要修改交换机。通过典型数据中心应用的试验台实验和仿真,我们表明,与基于流的协议(如DCTCP、L2DCT)和基于任务的调度(如Baraat)相比,我们的方案分别减少了70%和50%的任务完成时间。此外,我们的方案在数据中心流行的拓扑结构中也比其他方法高出18%到25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task-aware TCP in Data Center Networks
In modern data centers, many flow-based and task-based schemes have been proposed to speed up the data transmission in order to provide fast, reliable services for millions of users. However, existing flow-based schemes treat all flows in isolation, contributing less to or even hurting user experience due to the stalled flows. Other prevalent task-based approaches, such as centralized and decentralized scheduling, are sophisticated or unable to share task information. In this work, we first reveal that relinquishing bandwidth of leading flows to the stalled ones effectively reduces the task completion time. We further present the design and implementation of a general supporting scheme that shares the flow-tardiness information through a receiver-driven coordination. Our scheme can be flexibly and widely integrated with the state-of-the-art TCP protocols designed for data centers, while making no modification on switches. Through the testbed experiments and simulations of typical data center applications, we show that our scheme reduces the task completion time by 70% and 50% compared with the flow-based protocols (e.g. DCTCP, L2DCT) and task-based scheduling (e.g. Baraat), respectively. Moreover, our scheme also outperforms other approaches by 18% to 25% in prevalent topologies of data center.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximity Awareness Approach to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network ACTiCLOUD: Enabling the Next Generation of Cloud Applications The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing Decentralised Runtime Monitoring for Access Control Systems in Cloud Federations The Case for Using Content-Centric Networking for Distributing High-Energy Physics Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1