金融市场数据动态的潜在PCA解释问题

Dimitri Reiswich, R. Tompkins
{"title":"金融市场数据动态的潜在PCA解释问题","authors":"Dimitri Reiswich, R. Tompkins","doi":"10.2139/ssrn.1757221","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) is a common and popular tool for the analysis of financial market data, such as implied volatility smiles, interest rate curves and commodity future curves. We provide a critical view on PCA analysis and the corresponding results from empirical literature. In particular, it will be shown how PCA can produce patterned loading vectors if the correlation matrix just happens to belong to a particular matrix class. We will also provide evidence why the level factor is the dominating factor in virtually all empirical PCA analyses and question whether this reflects the true dynamics. In addition, we show how artifacts can be generated by PCA and how problematic the interpretation of PCA results can be, if a system is indeed driven by level, slope and curvature dynamics.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential PCA Interpretation Problems for the Dynamics of Financial Market Data\",\"authors\":\"Dimitri Reiswich, R. Tompkins\",\"doi\":\"10.2139/ssrn.1757221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal Component Analysis (PCA) is a common and popular tool for the analysis of financial market data, such as implied volatility smiles, interest rate curves and commodity future curves. We provide a critical view on PCA analysis and the corresponding results from empirical literature. In particular, it will be shown how PCA can produce patterned loading vectors if the correlation matrix just happens to belong to a particular matrix class. We will also provide evidence why the level factor is the dominating factor in virtually all empirical PCA analyses and question whether this reflects the true dynamics. In addition, we show how artifacts can be generated by PCA and how problematic the interpretation of PCA results can be, if a system is indeed driven by level, slope and curvature dynamics.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1757221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1757221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主成分分析(PCA)是一种常用的分析金融市场数据的工具,如隐含波动率曲线、利率曲线和商品期货曲线。我们提供了一个批判性的观点对主成分分析和相应的结果从实证文献。特别是,如果相关矩阵恰好属于特定的矩阵类,它将显示PCA如何产生图案加载向量。我们还将提供证据,为什么水平因素是几乎所有实证PCA分析的主导因素,并质疑这是否反映了真实的动态。此外,我们还展示了PCA如何产生伪影,以及如果系统确实是由水平、斜率和曲率动力学驱动的,那么PCA结果的解释可能会有多大问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential PCA Interpretation Problems for the Dynamics of Financial Market Data
Principal Component Analysis (PCA) is a common and popular tool for the analysis of financial market data, such as implied volatility smiles, interest rate curves and commodity future curves. We provide a critical view on PCA analysis and the corresponding results from empirical literature. In particular, it will be shown how PCA can produce patterned loading vectors if the correlation matrix just happens to belong to a particular matrix class. We will also provide evidence why the level factor is the dominating factor in virtually all empirical PCA analyses and question whether this reflects the true dynamics. In addition, we show how artifacts can be generated by PCA and how problematic the interpretation of PCA results can be, if a system is indeed driven by level, slope and curvature dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Estimation Combining Micro and Macro Data Monetary Policy under Data Uncertainty: Interest-Rate Smoothing from a Cross-Country Perspective Nudging Towards Data Equity: The Role of Stewardship and Fiduciaries in the Digital Economy Re-Engineering Key National Economic Indicators Quant Research Ideas to Test for ETF Option and Equity Markets in China and Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1