Andreas Becher, Jorge Echavarria, Daniel Ziener, S. Wildermann, J. Teich
{"title":"基于lut的近似加法器","authors":"Andreas Becher, Jorge Echavarria, Daniel Ziener, S. Wildermann, J. Teich","doi":"10.1109/FCCM.2016.16","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approximate adder structure for LUT-based FPGA technology. Compared with a full featured accurate carry-ripple adder, the longest path is significantly shortened which enables the clocking with an increased clock frequency. By using the proposed adder structure, the throughput of an FPGA-based implementation can be significantly increased. On the other hand, the resulting average error can be reduced compared to similar approaches for ASIC implementations.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A LUT-Based Approximate Adder\",\"authors\":\"Andreas Becher, Jorge Echavarria, Daniel Ziener, S. Wildermann, J. Teich\",\"doi\":\"10.1109/FCCM.2016.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel approximate adder structure for LUT-based FPGA technology. Compared with a full featured accurate carry-ripple adder, the longest path is significantly shortened which enables the clocking with an increased clock frequency. By using the proposed adder structure, the throughput of an FPGA-based implementation can be significantly increased. On the other hand, the resulting average error can be reduced compared to similar approaches for ASIC implementations.\",\"PeriodicalId\":113498,\"journal\":{\"name\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2016.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we propose a novel approximate adder structure for LUT-based FPGA technology. Compared with a full featured accurate carry-ripple adder, the longest path is significantly shortened which enables the clocking with an increased clock frequency. By using the proposed adder structure, the throughput of an FPGA-based implementation can be significantly increased. On the other hand, the resulting average error can be reduced compared to similar approaches for ASIC implementations.