一种在知识库中评估三重置信度和检测不正确三重的方法

Haihua Xie, Xiaoqing Lu, Zhi Tang, Mao Ye
{"title":"一种在知识库中评估三重置信度和检测不正确三重的方法","authors":"Haihua Xie, Xiaoqing Lu, Zhi Tang, Mao Ye","doi":"10.1145/2910896.2925456","DOIUrl":null,"url":null,"abstract":"The accuracy of the contents of a knowledge base determines the effectiveness of knowledge service applications, thus, it is necessary to evaluate the confidence of triples when a knowledge base is built. This study introduces a generic computational methodology to compute the confidence values of triples in knowledge bases and detect potentially incorrect ones for further verification. The major contributions of the proposed methodology are as follows: (1) A process to compute the confidence values of triples is designed; (2) New algorithms are proposed to adjust the term frequency and inverse document frequency values of each triple; (3) A method to build a support vector machine (SVM) classifier based on the selected triples used for incorrect triple detection is presented.","PeriodicalId":109613,"journal":{"name":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A methodology to evaluate triple confidence and detect incorrect triples in knowledge bases\",\"authors\":\"Haihua Xie, Xiaoqing Lu, Zhi Tang, Mao Ye\",\"doi\":\"10.1145/2910896.2925456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of the contents of a knowledge base determines the effectiveness of knowledge service applications, thus, it is necessary to evaluate the confidence of triples when a knowledge base is built. This study introduces a generic computational methodology to compute the confidence values of triples in knowledge bases and detect potentially incorrect ones for further verification. The major contributions of the proposed methodology are as follows: (1) A process to compute the confidence values of triples is designed; (2) New algorithms are proposed to adjust the term frequency and inverse document frequency values of each triple; (3) A method to build a support vector machine (SVM) classifier based on the selected triples used for incorrect triple detection is presented.\",\"PeriodicalId\":109613,\"journal\":{\"name\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2910896.2925456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2925456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

知识库内容的准确性决定了知识服务应用的有效性,因此在构建知识库时需要对三元组的置信度进行评估。本研究引入了一种通用的计算方法来计算知识库中三元组的置信度值,并检测潜在的不正确值以供进一步验证。该方法的主要贡献如下:(1)设计了一个计算三元组置信值的过程;(2)提出了调整每个三元组的词频和逆文档频率值的新算法;(3)提出了一种基于所选三元组构建支持向量机分类器的方法,用于错误三元组检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A methodology to evaluate triple confidence and detect incorrect triples in knowledge bases
The accuracy of the contents of a knowledge base determines the effectiveness of knowledge service applications, thus, it is necessary to evaluate the confidence of triples when a knowledge base is built. This study introduces a generic computational methodology to compute the confidence values of triples in knowledge bases and detect potentially incorrect ones for further verification. The major contributions of the proposed methodology are as follows: (1) A process to compute the confidence values of triples is designed; (2) New algorithms are proposed to adjust the term frequency and inverse document frequency values of each triple; (3) A method to build a support vector machine (SVM) classifier based on the selected triples used for incorrect triple detection is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL 2016) Panel: Preserving born-digital news ArchiveSpark: Efficient Web archive access, extraction and derivation Desiderata for exploratory search interfaces to Web archives in support of scholarly activities How to identify specialized research communities related to a researcher's changing interests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1