更快(而且仍然相当简单)的网络(非)可靠性无偏估计器

David R Karger
{"title":"更快(而且仍然相当简单)的网络(非)可靠性无偏估计器","authors":"David R Karger","doi":"10.1109/FOCS.2017.75","DOIUrl":null,"url":null,"abstract":"Consider the problem of estimating the (un)reliability of an n-vertex graph when edges fail with probability p. We show that the Recursive Contraction Algorithms for minimum cuts, essentially unchanged and running in n2+o(1) time, yields an unbiased estimator of constant relative variance (and thus an FPRAS with the same time bound) whenever pc","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Faster (and Still Pretty Simple) Unbiased Estimators for Network (Un)reliability\",\"authors\":\"David R Karger\",\"doi\":\"10.1109/FOCS.2017.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the problem of estimating the (un)reliability of an n-vertex graph when edges fail with probability p. We show that the Recursive Contraction Algorithms for minimum cuts, essentially unchanged and running in n2+o(1) time, yields an unbiased estimator of constant relative variance (and thus an FPRAS with the same time bound) whenever pc\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

考虑当边以概率p失败时估计n顶点图的(非)可靠性的问题。我们表明,最小切的递归收缩算法,本质上不变,在n2+o(1)时间内运行,无论何时pc,都会产生恒定相对方差的无偏估计(因此具有相同时间界限的FPRAS)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Faster (and Still Pretty Simple) Unbiased Estimators for Network (Un)reliability
Consider the problem of estimating the (un)reliability of an n-vertex graph when edges fail with probability p. We show that the Recursive Contraction Algorithms for minimum cuts, essentially unchanged and running in n2+o(1) time, yields an unbiased estimator of constant relative variance (and thus an FPRAS with the same time bound) whenever pc
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Learning Mixtures of Well-Separated Gaussians Obfuscating Compute-and-Compare Programs under LWE Minor-Free Graphs Have Light Spanners Lockable Obfuscation How to Achieve Non-Malleability in One or Two Rounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1