FuncyTuner

Tao Wang, Nikhil Jain, D. Beckingsale, David Boehme, F. Mueller, T. Gamblin
{"title":"FuncyTuner","authors":"Tao Wang, Nikhil Jain, D. Beckingsale, David Boehme, F. Mueller, T. Gamblin","doi":"10.1145/3337821.3337842","DOIUrl":null,"url":null,"abstract":"The de facto compilation model for production software compiles all modules of a target program with a single set of compilation flags, typically 02 or 03. Such a per-program compilation strategy may yield sub-optimal executables since programs often have multiple hot loops with diverse code structures and may be better optimized with a per-region compilation model that assembles an optimized executable by combining the best per-region code variants. In this paper, we demonstrate that a naïve greedy approach to per-region compilation often degrades performance in comparison to the 03 baseline. To overcome this problem, we contribute a novel per-loop compilation framework, FuncyTuner, which employs lightweight profiling to collect per-loop timing information, and then utilizes a space-focusing technique to construct a performant executable. Experimental results show that FuncyTuner can reliably improve performance of modern scientific applications on several multi-core architectures by 9.2% to 12.3% and 4.5% to 10.7%(geometric mean, up to 22% on certain program) in comparison to the 03 baseline and prior work, respectively.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FuncyTuner\",\"authors\":\"Tao Wang, Nikhil Jain, D. Beckingsale, David Boehme, F. Mueller, T. Gamblin\",\"doi\":\"10.1145/3337821.3337842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The de facto compilation model for production software compiles all modules of a target program with a single set of compilation flags, typically 02 or 03. Such a per-program compilation strategy may yield sub-optimal executables since programs often have multiple hot loops with diverse code structures and may be better optimized with a per-region compilation model that assembles an optimized executable by combining the best per-region code variants. In this paper, we demonstrate that a naïve greedy approach to per-region compilation often degrades performance in comparison to the 03 baseline. To overcome this problem, we contribute a novel per-loop compilation framework, FuncyTuner, which employs lightweight profiling to collect per-loop timing information, and then utilizes a space-focusing technique to construct a performant executable. Experimental results show that FuncyTuner can reliably improve performance of modern scientific applications on several multi-core architectures by 9.2% to 12.3% and 4.5% to 10.7%(geometric mean, up to 22% on certain program) in comparison to the 03 baseline and prior work, respectively.\",\"PeriodicalId\":405273,\"journal\":{\"name\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337821.3337842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FuncyTuner
The de facto compilation model for production software compiles all modules of a target program with a single set of compilation flags, typically 02 or 03. Such a per-program compilation strategy may yield sub-optimal executables since programs often have multiple hot loops with diverse code structures and may be better optimized with a per-region compilation model that assembles an optimized executable by combining the best per-region code variants. In this paper, we demonstrate that a naïve greedy approach to per-region compilation often degrades performance in comparison to the 03 baseline. To overcome this problem, we contribute a novel per-loop compilation framework, FuncyTuner, which employs lightweight profiling to collect per-loop timing information, and then utilizes a space-focusing technique to construct a performant executable. Experimental results show that FuncyTuner can reliably improve performance of modern scientific applications on several multi-core architectures by 9.2% to 12.3% and 4.5% to 10.7%(geometric mean, up to 22% on certain program) in comparison to the 03 baseline and prior work, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Express Link Placement for NoC-Based Many-Core Platforms Cartesian Collective Communication Artemis A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs diBELLA: Distributed Long Read to Long Read Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1