Aestimo:一个反馈导向的优化评估工具

Paul Berube, J. N. Amaral
{"title":"Aestimo:一个反馈导向的优化评估工具","authors":"Paul Berube, J. N. Amaral","doi":"10.1109/ISPASS.2006.1620809","DOIUrl":null,"url":null,"abstract":"Published studies that use feedback-directed optimization (FDO) techniques use either a single input for both training and performance evaluation, or a single input for training and a single input for evaluation. Thus an important question is if the FDO results published in the literature are sensitive to the training and testing input selection. Aestimo is a new evaluation tool that uses a workload of inputs to evaluate the sensitivity of specific code transformations to the choice of inputs in the training and testing phases. Aestimo uses optimization logs to isolate the effects of individual code transformations. It incorporates metrics to determine the effect of training input selection on individual compiler decisions. Besides describing the structure of Aestimo, this paper presents a case study that uses SPEC CINT2000 benchmark programs with the Open Research Compiler (ORC) to investigate the effect of training/testing input selection on in-lining and if-conversion. The experimental results indicate that: (1) training input selection affects the compiler decisions made for these code transformation; (2) the choice of training/testing inputs can have a significant impact on measured performance.","PeriodicalId":369192,"journal":{"name":"2006 IEEE International Symposium on Performance Analysis of Systems and Software","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Aestimo: a feedback-directed optimization evaluation tool\",\"authors\":\"Paul Berube, J. N. Amaral\",\"doi\":\"10.1109/ISPASS.2006.1620809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Published studies that use feedback-directed optimization (FDO) techniques use either a single input for both training and performance evaluation, or a single input for training and a single input for evaluation. Thus an important question is if the FDO results published in the literature are sensitive to the training and testing input selection. Aestimo is a new evaluation tool that uses a workload of inputs to evaluate the sensitivity of specific code transformations to the choice of inputs in the training and testing phases. Aestimo uses optimization logs to isolate the effects of individual code transformations. It incorporates metrics to determine the effect of training input selection on individual compiler decisions. Besides describing the structure of Aestimo, this paper presents a case study that uses SPEC CINT2000 benchmark programs with the Open Research Compiler (ORC) to investigate the effect of training/testing input selection on in-lining and if-conversion. The experimental results indicate that: (1) training input selection affects the compiler decisions made for these code transformation; (2) the choice of training/testing inputs can have a significant impact on measured performance.\",\"PeriodicalId\":369192,\"journal\":{\"name\":\"2006 IEEE International Symposium on Performance Analysis of Systems and Software\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Performance Analysis of Systems and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2006.1620809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Performance Analysis of Systems and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2006.1620809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

已发表的使用反馈导向优化(FDO)技术的研究要么使用单一输入进行培训和绩效评估,要么使用单一输入进行培训和单一输入进行评估。因此,一个重要的问题是,如果发表在文献中的FDO结果是敏感的训练和测试输入选择。Aestimo是一种新的评估工具,它使用输入的工作量来评估特定代码转换对训练和测试阶段输入选择的敏感性。Aestimo使用优化日志来隔离单个代码转换的效果。它结合了度量来确定训练输入选择对单个编译器决策的影响。除了描述Aestimo的结构外,本文还介绍了一个案例研究,使用SPEC CINT2000基准程序和开放研究编译器(ORC)来研究训练/测试输入选择对内联和if转换的影响。实验结果表明:(1)训练输入的选择影响编译器对这些代码转换的决策;(2)训练/测试输入的选择对测量绩效有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aestimo: a feedback-directed optimization evaluation tool
Published studies that use feedback-directed optimization (FDO) techniques use either a single input for both training and performance evaluation, or a single input for training and a single input for evaluation. Thus an important question is if the FDO results published in the literature are sensitive to the training and testing input selection. Aestimo is a new evaluation tool that uses a workload of inputs to evaluate the sensitivity of specific code transformations to the choice of inputs in the training and testing phases. Aestimo uses optimization logs to isolate the effects of individual code transformations. It incorporates metrics to determine the effect of training input selection on individual compiler decisions. Besides describing the structure of Aestimo, this paper presents a case study that uses SPEC CINT2000 benchmark programs with the Open Research Compiler (ORC) to investigate the effect of training/testing input selection on in-lining and if-conversion. The experimental results indicate that: (1) training input selection affects the compiler decisions made for these code transformation; (2) the choice of training/testing inputs can have a significant impact on measured performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating architectural exploration using canonical instruction segments Simulation sampling with live-points Characterizing the branch misprediction penalty Friendly fire: understanding the effects of multiprocessor prefetches Evaluating the efficacy of statistical simulation for design space exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1