Bogdan Pamfil, Richard Palm, A. Vyas, H. Staaf, C. Rusu, P. D. Folkow
{"title":"基于分形的压电能量采集器多目标设计优化","authors":"Bogdan Pamfil, Richard Palm, A. Vyas, H. Staaf, C. Rusu, P. D. Folkow","doi":"10.1109/PowerMEMS54003.2021.9658390","DOIUrl":null,"url":null,"abstract":"This paper studies optimization solutions for a proof-of-concept design methodology for a fractal-based tree energy harvester with a stress distribution optimized structure. The focus is on obtaining a sufficiently high-power output and a high enough stress in the longitudinal branch direction by using Frequency Response Functions. The design methodology shows that using the MATLAB code with Sensitivity Analysis and Multi-objective Optimization in combination with elitist genetic algorithm enables an optimal design.","PeriodicalId":165158,"journal":{"name":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective Design Optimization of Fractal-based Piezoelectric Energy Harvester\",\"authors\":\"Bogdan Pamfil, Richard Palm, A. Vyas, H. Staaf, C. Rusu, P. D. Folkow\",\"doi\":\"10.1109/PowerMEMS54003.2021.9658390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies optimization solutions for a proof-of-concept design methodology for a fractal-based tree energy harvester with a stress distribution optimized structure. The focus is on obtaining a sufficiently high-power output and a high enough stress in the longitudinal branch direction by using Frequency Response Functions. The design methodology shows that using the MATLAB code with Sensitivity Analysis and Multi-objective Optimization in combination with elitist genetic algorithm enables an optimal design.\",\"PeriodicalId\":165158,\"journal\":{\"name\":\"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS54003.2021.9658390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS54003.2021.9658390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Objective Design Optimization of Fractal-based Piezoelectric Energy Harvester
This paper studies optimization solutions for a proof-of-concept design methodology for a fractal-based tree energy harvester with a stress distribution optimized structure. The focus is on obtaining a sufficiently high-power output and a high enough stress in the longitudinal branch direction by using Frequency Response Functions. The design methodology shows that using the MATLAB code with Sensitivity Analysis and Multi-objective Optimization in combination with elitist genetic algorithm enables an optimal design.