D. Hollman, B. Lelbach, H. Edwards, M. Hoemmen, Daniel Sunderland, C. Trott
{"title":"c++中的mdspan:将性能可移植特性集成到国际语言标准中的案例研究","authors":"D. Hollman, B. Lelbach, H. Edwards, M. Hoemmen, Daniel Sunderland, C. Trott","doi":"10.1109/P3HPC49587.2019.00011","DOIUrl":null,"url":null,"abstract":"Multi-dimensional arrays are ubiquitous in high-performance computing (HPC), but their absence from the C++ language standard is a long-standing and well-known limitation of their use for HPC. This paper describes the design and implementation of mdspan, a proposed C++ standard multidimensional array view (planned for inclusion in C++23). The proposal is largely inspired by work done in the Kokkos project— a C++ performance-portable programming model de- ployed by numerous HPC institutions to prepare their code base for exascale-class supercomputing systems. This paper describes the final design of mdspan af- ter a five-year process to achieve consensus in the C++ community. In particular, we will lay out how the design addresses some of the core challenges of performance-portable programming, and how its cus- tomization points allow a seamless extension into areas not currently addressed by the C++ Standard but which are of critical importance in the heterogeneous computing world of today’s systems. Finally, we have provided a production-quality implementation of the proposal in its current form. This work includes several benchmarks of this implementation aimed at demon- strating the zero-overhead nature of the modern design.","PeriodicalId":377385,"journal":{"name":"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","volume":"666 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"mdspan in C++: A Case Study in the Integration of Performance Portable Features into International Language Standards\",\"authors\":\"D. Hollman, B. Lelbach, H. Edwards, M. Hoemmen, Daniel Sunderland, C. Trott\",\"doi\":\"10.1109/P3HPC49587.2019.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-dimensional arrays are ubiquitous in high-performance computing (HPC), but their absence from the C++ language standard is a long-standing and well-known limitation of their use for HPC. This paper describes the design and implementation of mdspan, a proposed C++ standard multidimensional array view (planned for inclusion in C++23). The proposal is largely inspired by work done in the Kokkos project— a C++ performance-portable programming model de- ployed by numerous HPC institutions to prepare their code base for exascale-class supercomputing systems. This paper describes the final design of mdspan af- ter a five-year process to achieve consensus in the C++ community. In particular, we will lay out how the design addresses some of the core challenges of performance-portable programming, and how its cus- tomization points allow a seamless extension into areas not currently addressed by the C++ Standard but which are of critical importance in the heterogeneous computing world of today’s systems. Finally, we have provided a production-quality implementation of the proposal in its current form. This work includes several benchmarks of this implementation aimed at demon- strating the zero-overhead nature of the modern design.\",\"PeriodicalId\":377385,\"journal\":{\"name\":\"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"volume\":\"666 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/P3HPC49587.2019.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/P3HPC49587.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
mdspan in C++: A Case Study in the Integration of Performance Portable Features into International Language Standards
Multi-dimensional arrays are ubiquitous in high-performance computing (HPC), but their absence from the C++ language standard is a long-standing and well-known limitation of their use for HPC. This paper describes the design and implementation of mdspan, a proposed C++ standard multidimensional array view (planned for inclusion in C++23). The proposal is largely inspired by work done in the Kokkos project— a C++ performance-portable programming model de- ployed by numerous HPC institutions to prepare their code base for exascale-class supercomputing systems. This paper describes the final design of mdspan af- ter a five-year process to achieve consensus in the C++ community. In particular, we will lay out how the design addresses some of the core challenges of performance-portable programming, and how its cus- tomization points allow a seamless extension into areas not currently addressed by the C++ Standard but which are of critical importance in the heterogeneous computing world of today’s systems. Finally, we have provided a production-quality implementation of the proposal in its current form. This work includes several benchmarks of this implementation aimed at demon- strating the zero-overhead nature of the modern design.