交通信号控制的分散学习

K. J. Prabuchandran, Hemanth Kumar A.N, S. Bhatnagar
{"title":"交通信号控制的分散学习","authors":"K. J. Prabuchandran, Hemanth Kumar A.N, S. Bhatnagar","doi":"10.1109/COMSNETS.2015.7098712","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of obtaining the optimal order of the phase sequence [14] in a road network for efficiently managing the traffic flow. We model this problem as a Markov decision process (MDP). This problem is hard to solve when simultaneously considering all the junctions in the road network. So, we propose a decentralized multi-agent reinforcement learning (MARL) algorithm for solving this problem by considering each junction in the road network as a separate agent (controller). Each agent optimizes the order of the phase sequence using Q-learning with either ∈-greedy or UCB [3] based exploration strategies. The coordination between the junctions is achieved based on the cost feedback signal received from the neighbouring junctions. The learning algorithm for each agent updates the Q-factors using this feedback signal. We show through simulations over VISSIM that our algorithms perform significantly better than the standard fixed signal timing (FST), the saturation balancing (SAT) [14] and the round-robin multi-agent reinforcement learning algorithms [11] over two real road networks.","PeriodicalId":277593,"journal":{"name":"2015 7th International Conference on Communication Systems and Networks (COMSNETS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Decentralized learning for traffic signal control\",\"authors\":\"K. J. Prabuchandran, Hemanth Kumar A.N, S. Bhatnagar\",\"doi\":\"10.1109/COMSNETS.2015.7098712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem of obtaining the optimal order of the phase sequence [14] in a road network for efficiently managing the traffic flow. We model this problem as a Markov decision process (MDP). This problem is hard to solve when simultaneously considering all the junctions in the road network. So, we propose a decentralized multi-agent reinforcement learning (MARL) algorithm for solving this problem by considering each junction in the road network as a separate agent (controller). Each agent optimizes the order of the phase sequence using Q-learning with either ∈-greedy or UCB [3] based exploration strategies. The coordination between the junctions is achieved based on the cost feedback signal received from the neighbouring junctions. The learning algorithm for each agent updates the Q-factors using this feedback signal. We show through simulations over VISSIM that our algorithms perform significantly better than the standard fixed signal timing (FST), the saturation balancing (SAT) [14] and the round-robin multi-agent reinforcement learning algorithms [11] over two real road networks.\",\"PeriodicalId\":277593,\"journal\":{\"name\":\"2015 7th International Conference on Communication Systems and Networks (COMSNETS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Communication Systems and Networks (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS.2015.7098712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2015.7098712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在本文中,我们研究了获取路网中相序的最优阶数[14]的问题,以便有效地管理交通流。我们将此问题建模为马尔可夫决策过程(MDP)。当同时考虑路网中所有的交叉口时,这个问题很难解决。因此,我们提出了一种分散的多智能体强化学习(MARL)算法来解决这个问题,该算法将路网中的每个路口视为一个单独的智能体(控制器)。每个智能体使用基于∈-greedy或UCB[3]的探索策略使用Q-learning优化相序列的顺序。节点之间的协调是基于从相邻节点接收到的代价反馈信号来实现的。每个智能体的学习算法使用这个反馈信号更新q因子。我们通过在VISSIM上的模拟表明,我们的算法在两个真实道路网络上的表现明显优于标准的固定信号定时(FST)、饱和平衡(SAT)[14]和循环多智能体强化学习算法[11]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized learning for traffic signal control
In this paper, we study the problem of obtaining the optimal order of the phase sequence [14] in a road network for efficiently managing the traffic flow. We model this problem as a Markov decision process (MDP). This problem is hard to solve when simultaneously considering all the junctions in the road network. So, we propose a decentralized multi-agent reinforcement learning (MARL) algorithm for solving this problem by considering each junction in the road network as a separate agent (controller). Each agent optimizes the order of the phase sequence using Q-learning with either ∈-greedy or UCB [3] based exploration strategies. The coordination between the junctions is achieved based on the cost feedback signal received from the neighbouring junctions. The learning algorithm for each agent updates the Q-factors using this feedback signal. We show through simulations over VISSIM that our algorithms perform significantly better than the standard fixed signal timing (FST), the saturation balancing (SAT) [14] and the round-robin multi-agent reinforcement learning algorithms [11] over two real road networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GSM-based positioning for public transportation commuters Passing the torch: Role alternation for fair energy usage in D2D group communication Performance analysis of parameters affecting power efficiency in networks BlinkToSCoAP: An end-to-end security framework for the Internet of Things Contextual sensitivity of the ambient temperature sensor in Smartphones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1