基于感知滤波和神经网络的语音情感识别

R. A, S. N.
{"title":"基于感知滤波和神经网络的语音情感识别","authors":"R. A, S. N.","doi":"10.4018/978-1-6684-2408-7.ch054","DOIUrl":null,"url":null,"abstract":"This chapter on multi speaker independent emotion recognition encompasses the use of perceptual features with filters spaced in Equivalent rectangular bandwidth (ERB) and BARK scale and vector quantization (VQ) classifier for classifying groups and artificial neural network with back propagation algorithm for emotion classification in a group. Performance can be improved by using the large amount of data in a pertinent emotion to adequately train the system. With the limited set of data, this proposed system has provided consistently better accuracy for the perceptual feature with critical band analysis done in ERB scale.","PeriodicalId":143045,"journal":{"name":"Research Anthology on Artificial Neural Network Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotion Recognition From Speech Using Perceptual Filter and Neural Network\",\"authors\":\"R. A, S. N.\",\"doi\":\"10.4018/978-1-6684-2408-7.ch054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter on multi speaker independent emotion recognition encompasses the use of perceptual features with filters spaced in Equivalent rectangular bandwidth (ERB) and BARK scale and vector quantization (VQ) classifier for classifying groups and artificial neural network with back propagation algorithm for emotion classification in a group. Performance can be improved by using the large amount of data in a pertinent emotion to adequately train the system. With the limited set of data, this proposed system has provided consistently better accuracy for the perceptual feature with critical band analysis done in ERB scale.\",\"PeriodicalId\":143045,\"journal\":{\"name\":\"Research Anthology on Artificial Neural Network Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Artificial Neural Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-6684-2408-7.ch054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Artificial Neural Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-6684-2408-7.ch054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章关于多说话人独立的情绪识别,包括使用以等效矩形带宽(ERB)和BARK尺度间隔的滤波器的感知特征和向量量化(VQ)分类器对群体进行分类,以及使用反向传播算法的人工神经网络对群体进行情绪分类。通过使用相关情绪中的大量数据来充分训练系统,可以提高性能。在有限的数据集下,该系统通过ERB尺度的临界频带分析,为感知特征提供了一致的更好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotion Recognition From Speech Using Perceptual Filter and Neural Network
This chapter on multi speaker independent emotion recognition encompasses the use of perceptual features with filters spaced in Equivalent rectangular bandwidth (ERB) and BARK scale and vector quantization (VQ) classifier for classifying groups and artificial neural network with back propagation algorithm for emotion classification in a group. Performance can be improved by using the large amount of data in a pertinent emotion to adequately train the system. With the limited set of data, this proposed system has provided consistently better accuracy for the perceptual feature with critical band analysis done in ERB scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Proposal for Parameter-Free Surrogate Building Algorithm Using Artificial Neural Networks Optimizing Material Removal Rate Using Artificial Neural Network for Micro-EDM Infant Cry Recognition System Emotion Recognition From Speech Using Perceptual Filter and Neural Network Artificial Neural Network Training Algorithms in Modeling of Radial Overcut in EDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1