I. Agulló, Anthony J. Brady, Stav Haldar, A. Lamas-Linares, W. C. Proctor, J. Troupe
{"title":"基于卫星纠缠光子源的全球精确时间分布","authors":"I. Agulló, Anthony J. Brady, Stav Haldar, A. Lamas-Linares, W. C. Proctor, J. Troupe","doi":"10.1364/quantum.2022.qth3a.3","DOIUrl":null,"url":null,"abstract":"High-precision time synchronization is a fundamental requirement for quantum networks. We simulate a global time distribution network by using quantum clock synchronization – sharing entangled photons between satellite-ground station pairs. This provides sub-nanosecond to picosecond level precision over intercontinental scales (better than GPS).","PeriodicalId":369002,"journal":{"name":"Quantum 2.0 Conference and Exhibition","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Precision Time Distribution via Satellite-Based Entangled Photon Sources\",\"authors\":\"I. Agulló, Anthony J. Brady, Stav Haldar, A. Lamas-Linares, W. C. Proctor, J. Troupe\",\"doi\":\"10.1364/quantum.2022.qth3a.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-precision time synchronization is a fundamental requirement for quantum networks. We simulate a global time distribution network by using quantum clock synchronization – sharing entangled photons between satellite-ground station pairs. This provides sub-nanosecond to picosecond level precision over intercontinental scales (better than GPS).\",\"PeriodicalId\":369002,\"journal\":{\"name\":\"Quantum 2.0 Conference and Exhibition\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum 2.0 Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/quantum.2022.qth3a.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum 2.0 Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/quantum.2022.qth3a.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Precision Time Distribution via Satellite-Based Entangled Photon Sources
High-precision time synchronization is a fundamental requirement for quantum networks. We simulate a global time distribution network by using quantum clock synchronization – sharing entangled photons between satellite-ground station pairs. This provides sub-nanosecond to picosecond level precision over intercontinental scales (better than GPS).