衰落信道上大维信源卡尔曼滤波的均值估计MSE

Reza Parseh, D. Slock, K. Kansanen
{"title":"衰落信道上大维信源卡尔曼滤波的均值估计MSE","authors":"Reza Parseh, D. Slock, K. Kansanen","doi":"10.1109/SPAWC.2014.6941922","DOIUrl":null,"url":null,"abstract":"Uncoded transmission of a large dimensional Gauss-Markov vector process over a fading channel is considered. This problem is of interest in sensor network applications with data processing at the fusion center or in control and real-time monitoring where this method could be useful due to its simplicity and zero delay property. Assuming perfect channel knowledge at the receiver, the optimal estimator is the Kalman filter. In contrast to the classical Kalman filter, the prediction and estimation error covariance matrices are random. In this paper, by using Stieltjes transform analysis, we find an approximation to the pdf of the eigenvalue distribution of the estimation error covariance matrix for the high channel SNR regime. The approximated pdf is then used to obtain the mean estimation MSE of the Kalman filter.","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean estimation MSE for Kalman filtering of large dimensional sources sent over fading channels\",\"authors\":\"Reza Parseh, D. Slock, K. Kansanen\",\"doi\":\"10.1109/SPAWC.2014.6941922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncoded transmission of a large dimensional Gauss-Markov vector process over a fading channel is considered. This problem is of interest in sensor network applications with data processing at the fusion center or in control and real-time monitoring where this method could be useful due to its simplicity and zero delay property. Assuming perfect channel knowledge at the receiver, the optimal estimator is the Kalman filter. In contrast to the classical Kalman filter, the prediction and estimation error covariance matrices are random. In this paper, by using Stieltjes transform analysis, we find an approximation to the pdf of the eigenvalue distribution of the estimation error covariance matrix for the high channel SNR regime. The approximated pdf is then used to obtain the mean estimation MSE of the Kalman filter.\",\"PeriodicalId\":420837,\"journal\":{\"name\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2014.6941922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了大维高斯-马尔可夫矢量过程在衰落信道上的无编码传输。该问题在融合中心的数据处理传感器网络应用中或在控制和实时监测中很有意义,因为该方法简单且零延迟。假设接收端有完备的信道知识,最优估计器是卡尔曼滤波器。与经典卡尔曼滤波相比,预测和估计误差协方差矩阵是随机的。本文利用Stieltjes变换分析,得到了高信道信噪比下估计误差协方差矩阵特征值分布的近似解。然后使用逼近的pdf来获得卡尔曼滤波器的平均估计MSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mean estimation MSE for Kalman filtering of large dimensional sources sent over fading channels
Uncoded transmission of a large dimensional Gauss-Markov vector process over a fading channel is considered. This problem is of interest in sensor network applications with data processing at the fusion center or in control and real-time monitoring where this method could be useful due to its simplicity and zero delay property. Assuming perfect channel knowledge at the receiver, the optimal estimator is the Kalman filter. In contrast to the classical Kalman filter, the prediction and estimation error covariance matrices are random. In this paper, by using Stieltjes transform analysis, we find an approximation to the pdf of the eigenvalue distribution of the estimation error covariance matrix for the high channel SNR regime. The approximated pdf is then used to obtain the mean estimation MSE of the Kalman filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unifying viewpoints on distributed asynchronous optimization for MISO interference channels Sparse channel estimation including the impact of the transceiver filters with application to OFDM Towards a principled approach to designing distributed MAC protocols Information rates employing 1-bit quantization and oversampling at the receiver Suppression of pilot-contamination in massive MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1