{"title":"LIMBO:一个模拟可变载荷强度的工具","authors":"J. V. Kistowski, N. Herbst, Samuel Kounev","doi":"10.1145/2568088.2576092","DOIUrl":null,"url":null,"abstract":"Modern software systems are expected to deliver reliable performance under highly variable load intensities while at the same time making efficient use of dynamically allocated resources. Conventional benchmarking frameworks provide limited support for emulating such highly variable and dynamic load profiles and workload scenarios. Industrial benchmarks typically use workloads with constant or stepwise increasing load intensity, or they simply replay recorded workload traces. In this paper, we present LIMBO - an Eclipse-based tool for modeling variable load intensity profiles based on the Descartes Load Intensity Model as an underlying modeling formalism.","PeriodicalId":243233,"journal":{"name":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","volume":"513 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"LIMBO: a tool for modeling variable load intensities\",\"authors\":\"J. V. Kistowski, N. Herbst, Samuel Kounev\",\"doi\":\"10.1145/2568088.2576092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern software systems are expected to deliver reliable performance under highly variable load intensities while at the same time making efficient use of dynamically allocated resources. Conventional benchmarking frameworks provide limited support for emulating such highly variable and dynamic load profiles and workload scenarios. Industrial benchmarks typically use workloads with constant or stepwise increasing load intensity, or they simply replay recorded workload traces. In this paper, we present LIMBO - an Eclipse-based tool for modeling variable load intensity profiles based on the Descartes Load Intensity Model as an underlying modeling formalism.\",\"PeriodicalId\":243233,\"journal\":{\"name\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"volume\":\"513 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2568088.2576092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568088.2576092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LIMBO: a tool for modeling variable load intensities
Modern software systems are expected to deliver reliable performance under highly variable load intensities while at the same time making efficient use of dynamically allocated resources. Conventional benchmarking frameworks provide limited support for emulating such highly variable and dynamic load profiles and workload scenarios. Industrial benchmarks typically use workloads with constant or stepwise increasing load intensity, or they simply replay recorded workload traces. In this paper, we present LIMBO - an Eclipse-based tool for modeling variable load intensity profiles based on the Descartes Load Intensity Model as an underlying modeling formalism.