非均匀攻击概率下的卫星通信干扰弹性

L. Nguyen, D. Nguyen, N. Tran, Clayton Bosler, David Brunnenmeyer
{"title":"非均匀攻击概率下的卫星通信干扰弹性","authors":"L. Nguyen, D. Nguyen, N. Tran, Clayton Bosler, David Brunnenmeyer","doi":"10.1109/MILCOM52596.2021.9652944","DOIUrl":null,"url":null,"abstract":"This paper presents a new framework for SATCOM jamming resiliency in the presence of a smart adversary jammer that can prioritize specific channels to attack with a non-uniform probability of distribution. We first develop a model and a defense action strategy based on a Markov decision process (MDP). We propose a greedy algorithm for the MDP-based defense algorithm's policy to optimize the expected user's immediate and future discounted rewards. Next, we remove the assumption that the user has specific information about the attacker's pattern and model. We develop a Q-learning algorithm-a reinforcement learning (RL) approach-to optimize the user's policy. We show that the Q-learning method provides an attractive defense strategy solution without explicit knowledge of the jammer's strategy. Computer simulation results show that the MDP-based defense strategies are very efficient; they offer a significant data rate advantage over the simple random hopping approach. Also, the proposed Q-learning performance can achieve close to the MDP approach without explicit knowledge of the jammer's strategy or attacking model.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SATCOM Jamming Resiliency under Non-Uniform Probability of Attacks\",\"authors\":\"L. Nguyen, D. Nguyen, N. Tran, Clayton Bosler, David Brunnenmeyer\",\"doi\":\"10.1109/MILCOM52596.2021.9652944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new framework for SATCOM jamming resiliency in the presence of a smart adversary jammer that can prioritize specific channels to attack with a non-uniform probability of distribution. We first develop a model and a defense action strategy based on a Markov decision process (MDP). We propose a greedy algorithm for the MDP-based defense algorithm's policy to optimize the expected user's immediate and future discounted rewards. Next, we remove the assumption that the user has specific information about the attacker's pattern and model. We develop a Q-learning algorithm-a reinforcement learning (RL) approach-to optimize the user's policy. We show that the Q-learning method provides an attractive defense strategy solution without explicit knowledge of the jammer's strategy. Computer simulation results show that the MDP-based defense strategies are very efficient; they offer a significant data rate advantage over the simple random hopping approach. Also, the proposed Q-learning performance can achieve close to the MDP approach without explicit knowledge of the jammer's strategy or attacking model.\",\"PeriodicalId\":187645,\"journal\":{\"name\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM52596.2021.9652944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9652944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的卫星通信干扰复原框架,该框架可以优先考虑具有非均匀分布概率的特定信道的攻击。我们首先建立了一个基于马尔可夫决策过程的模型和防御行动策略。针对基于mdp的防御算法策略,提出了一种贪心算法,以优化预期用户的即时和未来折扣奖励。接下来,我们去掉用户拥有关于攻击者模式和模型的特定信息的假设。我们开发了一种q学习算法-一种强化学习(RL)方法来优化用户的策略。我们表明,q -学习方法提供了一个有吸引力的防御策略解决方案,而不需要明确了解干扰者的策略。计算机仿真结果表明,基于mdp的防御策略是非常有效的;与简单的随机跳变方法相比,它们提供了显著的数据速率优势。此外,所提出的Q-learning性能可以接近MDP方法,而无需明确了解干扰者的策略或攻击模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SATCOM Jamming Resiliency under Non-Uniform Probability of Attacks
This paper presents a new framework for SATCOM jamming resiliency in the presence of a smart adversary jammer that can prioritize specific channels to attack with a non-uniform probability of distribution. We first develop a model and a defense action strategy based on a Markov decision process (MDP). We propose a greedy algorithm for the MDP-based defense algorithm's policy to optimize the expected user's immediate and future discounted rewards. Next, we remove the assumption that the user has specific information about the attacker's pattern and model. We develop a Q-learning algorithm-a reinforcement learning (RL) approach-to optimize the user's policy. We show that the Q-learning method provides an attractive defense strategy solution without explicit knowledge of the jammer's strategy. Computer simulation results show that the MDP-based defense strategies are very efficient; they offer a significant data rate advantage over the simple random hopping approach. Also, the proposed Q-learning performance can achieve close to the MDP approach without explicit knowledge of the jammer's strategy or attacking model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RF-based Network Inference: Theoretical Foundations Security Threats Analysis of the Unmanned Aerial Vehicle System Using Distributed Ledgers For Command and Control – Concepts and Challenges DerechoDDS: Strongly Consistent Data Distribution for Mission-Critical Applications CUE: A Standalone Testbed for 5G Experimentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1