基于NCTF控制器的单质量旋转系统定位控制

Rozilawati Mohd Nor, S. Chong
{"title":"基于NCTF控制器的单质量旋转系统定位控制","authors":"Rozilawati Mohd Nor, S. Chong","doi":"10.1109/ICCSCE.2013.6719994","DOIUrl":null,"url":null,"abstract":"In this paper a practical control scheme is discussed for the positioning and tracking control of a one mass rotary system. The practical controller designed must have high speed performance, high accuracy, robust to disturbance and parameter variation and have high positioning response which always welcome to industry. Hence, a Nominal Characteristic Trajectory Control (NCTF) controller has been proposed to yield high motion control performance and high robustness. This controller does not require exact model and parameter identification which make it easy to design. Basically, NCTF controller consists of a simple structure comprising Nominal Characteristic Trajectory (NCT) and Proportional Integral (PI) Compensator. Apart from a Conventional NCTF controller, the NCTF controller also improves to Continuous Motion NCTF (CM-NCTF) controller. CM-NCTF controller has same design procedure as Conventional NCTF controller and it is able to produce a slightly better performance than the conventional one by producing slightly faster response and smooth tracking performance. To evaluate the controller performance, the Conventional NCTF controller and CM-NCTF controller, was compared to PID control through experiment.","PeriodicalId":319285,"journal":{"name":"2013 IEEE International Conference on Control System, Computing and Engineering","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Positioning control of a one mass rotary system using NCTF controller\",\"authors\":\"Rozilawati Mohd Nor, S. Chong\",\"doi\":\"10.1109/ICCSCE.2013.6719994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a practical control scheme is discussed for the positioning and tracking control of a one mass rotary system. The practical controller designed must have high speed performance, high accuracy, robust to disturbance and parameter variation and have high positioning response which always welcome to industry. Hence, a Nominal Characteristic Trajectory Control (NCTF) controller has been proposed to yield high motion control performance and high robustness. This controller does not require exact model and parameter identification which make it easy to design. Basically, NCTF controller consists of a simple structure comprising Nominal Characteristic Trajectory (NCT) and Proportional Integral (PI) Compensator. Apart from a Conventional NCTF controller, the NCTF controller also improves to Continuous Motion NCTF (CM-NCTF) controller. CM-NCTF controller has same design procedure as Conventional NCTF controller and it is able to produce a slightly better performance than the conventional one by producing slightly faster response and smooth tracking performance. To evaluate the controller performance, the Conventional NCTF controller and CM-NCTF controller, was compared to PID control through experiment.\",\"PeriodicalId\":319285,\"journal\":{\"name\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2013.6719994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control System, Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2013.6719994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文讨论了一种实用的单质量旋转系统定位跟踪控制方案。所设计的实用控制器必须具有高速性能、高精度、对干扰和参数变化的鲁棒性以及高的定位响应,这一直受到工业的欢迎。因此,提出了一种标称特征轨迹控制(NCTF)控制器,以获得高运动控制性能和高鲁棒性。该控制器不需要精确的模型和参数辨识,便于设计。基本上,NCTF控制器由标称特征轨迹(NCT)和比例积分(PI)补偿器组成的简单结构组成。除了传统的NCTF控制器外,NCTF控制器还改进为连续运动NCTF (CM-NCTF)控制器。CM-NCTF控制器具有与传统NCTF控制器相同的设计过程,并且能够产生略快的响应和平滑的跟踪性能,从而比传统NCTF控制器产生略好的性能。为了评价控制器的性能,通过实验将常规NCTF控制器和CM-NCTF控制器与PID控制进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Positioning control of a one mass rotary system using NCTF controller
In this paper a practical control scheme is discussed for the positioning and tracking control of a one mass rotary system. The practical controller designed must have high speed performance, high accuracy, robust to disturbance and parameter variation and have high positioning response which always welcome to industry. Hence, a Nominal Characteristic Trajectory Control (NCTF) controller has been proposed to yield high motion control performance and high robustness. This controller does not require exact model and parameter identification which make it easy to design. Basically, NCTF controller consists of a simple structure comprising Nominal Characteristic Trajectory (NCT) and Proportional Integral (PI) Compensator. Apart from a Conventional NCTF controller, the NCTF controller also improves to Continuous Motion NCTF (CM-NCTF) controller. CM-NCTF controller has same design procedure as Conventional NCTF controller and it is able to produce a slightly better performance than the conventional one by producing slightly faster response and smooth tracking performance. To evaluate the controller performance, the Conventional NCTF controller and CM-NCTF controller, was compared to PID control through experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital aerial imagery of unmanned aerial vehicle for various applications Performance study of preliminary mini anechoic chamber fitted with coconut shell coated absorbers A new approach for the design of relay control circuits Design of ultra wideband rectangular microstrip notched patch antenna Delay compensation using PID controller and GA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1