矩的delta法与概率和

J. Cichon, Z. Golebiewski, Marcin Kardas, M. Klonowski
{"title":"矩的delta法与概率和","authors":"J. Cichon, Z. Golebiewski, Marcin Kardas, M. Klonowski","doi":"10.1137/1.9781611973037.11","DOIUrl":null,"url":null,"abstract":"We discuss a general framework for determining asymptotics of the expected value of random variables of the form f(X) in terms of a function f and central moments of the random variable X. This method may be used for approximation of entropy, inverse moments, and some statistics of discrete random variables useful in analysis of some randomized algorithms. Our approach is based on some variant of the Delta Method of Moments. We formulate a general result for an arbitrary distribution and next we show its specific extension to random variables which are sums of identically distributed independent random variables. Our method simpli files previous proofs of results of several authors and can be automated to a large extent. We apply our method to the binomial, negative binomial, Poisson and hypergeometric distribution. We extend the class of functions for which our method is applicable to some subclass of exponential functions and double exponential functions for some cases.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"515 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On Delta-Method of Moments and Probabilistic Sums\",\"authors\":\"J. Cichon, Z. Golebiewski, Marcin Kardas, M. Klonowski\",\"doi\":\"10.1137/1.9781611973037.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a general framework for determining asymptotics of the expected value of random variables of the form f(X) in terms of a function f and central moments of the random variable X. This method may be used for approximation of entropy, inverse moments, and some statistics of discrete random variables useful in analysis of some randomized algorithms. Our approach is based on some variant of the Delta Method of Moments. We formulate a general result for an arbitrary distribution and next we show its specific extension to random variables which are sums of identically distributed independent random variables. Our method simpli files previous proofs of results of several authors and can be automated to a large extent. We apply our method to the binomial, negative binomial, Poisson and hypergeometric distribution. We extend the class of functions for which our method is applicable to some subclass of exponential functions and double exponential functions for some cases.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"515 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973037.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973037.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文讨论了用函数f和随机变量X的中心矩来确定形式为f(X)的随机变量期望值的渐近性的一般框架。该方法可用于熵的逼近、逆矩的逼近以及对一些随机算法分析有用的离散随机变量的一些统计量。我们的方法是基于Delta矩法的一些变体。本文给出了任意分布的一般结果,并将其推广到随机变量,即同分布独立随机变量的和。我们的方法简单地归档了几个作者以前的结果证明,并且可以在很大程度上自动化。将该方法应用于二项分布、负二项分布、泊松分布和超几何分布。在某些情况下,将该方法适用的函数类推广到指数函数和重指数函数的某些子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Delta-Method of Moments and Probabilistic Sums
We discuss a general framework for determining asymptotics of the expected value of random variables of the form f(X) in terms of a function f and central moments of the random variable X. This method may be used for approximation of entropy, inverse moments, and some statistics of discrete random variables useful in analysis of some randomized algorithms. Our approach is based on some variant of the Delta Method of Moments. We formulate a general result for an arbitrary distribution and next we show its specific extension to random variables which are sums of identically distributed independent random variables. Our method simpli files previous proofs of results of several authors and can be automated to a large extent. We apply our method to the binomial, negative binomial, Poisson and hypergeometric distribution. We extend the class of functions for which our method is applicable to some subclass of exponential functions and double exponential functions for some cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protection Number of Recursive Trees Ranked Schröder Trees QuickSort: Improved right-tail asymptotics for the limiting distribution, and large deviations (Extended Abstract) Subcritical random hypergraphs, high-order components, and hypertrees Esthetic Numbers and Lifting Restrictions on the Analysis of Summatory Functions of Regular Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1