{"title":"基于MoS2/SnS2异质结构的蛋白质展开","authors":"Runyi Yuan, Wei Si","doi":"10.1109/3M-NANO56083.2022.9941518","DOIUrl":null,"url":null,"abstract":"In recent years, many diseases have been proved to be caused by abnormal protein sequences, so the protein sequencing has been a significant research topic. At the same time, nanopore technologies are striving to realize protein sequencing at single amino acid resolution. However, among the unsolved problems the unfolding of structured proteins into chain-like structures is a prerequisite for nanopore sequencing. In this work, we propose a general two-dimensional heterostructure that can be used for protein unfolding without the need for specific biological or chemical reagents. The role of two-dimensional heterostructures on protein unfolding is studied by molecular dynamics, which provides new inspiration for the subsequent experiments to achieve a general and reliable protein unfolding method.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein Unfolding with MoS2/SnS2 Heterostructure\",\"authors\":\"Runyi Yuan, Wei Si\",\"doi\":\"10.1109/3M-NANO56083.2022.9941518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many diseases have been proved to be caused by abnormal protein sequences, so the protein sequencing has been a significant research topic. At the same time, nanopore technologies are striving to realize protein sequencing at single amino acid resolution. However, among the unsolved problems the unfolding of structured proteins into chain-like structures is a prerequisite for nanopore sequencing. In this work, we propose a general two-dimensional heterostructure that can be used for protein unfolding without the need for specific biological or chemical reagents. The role of two-dimensional heterostructures on protein unfolding is studied by molecular dynamics, which provides new inspiration for the subsequent experiments to achieve a general and reliable protein unfolding method.\",\"PeriodicalId\":370631,\"journal\":{\"name\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO56083.2022.9941518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,许多疾病被证明是由蛋白质序列异常引起的,因此蛋白质测序已成为一个重要的研究课题。与此同时,纳米孔技术正在努力实现单氨基酸分辨率的蛋白质测序。然而,在尚未解决的问题中,将结构蛋白展开成链状结构是纳米孔测序的先决条件。在这项工作中,我们提出了一种一般的二维异质结构,可以用于蛋白质展开,而不需要特定的生物或化学试剂。利用分子动力学方法研究了二维异质结构对蛋白质展开的作用,为后续实验提供了新的启发,以实现一种通用、可靠的蛋白质展开方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein Unfolding with MoS2/SnS2 Heterostructure
In recent years, many diseases have been proved to be caused by abnormal protein sequences, so the protein sequencing has been a significant research topic. At the same time, nanopore technologies are striving to realize protein sequencing at single amino acid resolution. However, among the unsolved problems the unfolding of structured proteins into chain-like structures is a prerequisite for nanopore sequencing. In this work, we propose a general two-dimensional heterostructure that can be used for protein unfolding without the need for specific biological or chemical reagents. The role of two-dimensional heterostructures on protein unfolding is studied by molecular dynamics, which provides new inspiration for the subsequent experiments to achieve a general and reliable protein unfolding method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Buffer Solution and Concentration on AFM Imaging of DNA Molecules Electrochemical Dissolution Behavior of GH4169 and K418 Superalloy in NaNO3 Solution at Low Current Density A Stiffness-tunable MEMS Accelerometer with In-operation Drift Compensation Kinematic Calibration in Local Assembly Space of a Six-axis Industrial Robot for Precise Assembly Design and Analysis of Novel Millimetre-level Compliant Constant-force Mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1