A. Matus-Vargas, G. Rodríguez-Gómez, J. Martínez-Carranza
{"title":"地面效应下MAVs传感器故障缓解*","authors":"A. Matus-Vargas, G. Rodríguez-Gómez, J. Martínez-Carranza","doi":"10.1109/REDUAS47371.2019.8999709","DOIUrl":null,"url":null,"abstract":"Small multirotors are suitable to navigate in complex and confined environments that are otherwise inaccessible to larger drones. In such conditions, airflow interactions between the rotors and nearby surface take place. The most common of these interactions is the ground effect. Besides the increment in thrust efficiency, the ground effect affects the onboard sensors of the vehicle. In this paper, we present a fault diagnosis scheme and a control strategy for a multirotor with sensor faults caused by the ground effect. We assume a hierarchical control structure composed of an external PD controller and an internal PI controller. We consider that sensor faults occur on the inner loop and counteract them in the outer one. The fault diagnosis scheme is designed as a logical process which depends on the weighted residual. The control strategy combines the external controller and a function of the residual. Finally, we evaluate the effectiveness of our controller in simulation.","PeriodicalId":351115,"journal":{"name":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensor Fault Mitigation for MAVs under Ground Effect*\",\"authors\":\"A. Matus-Vargas, G. Rodríguez-Gómez, J. Martínez-Carranza\",\"doi\":\"10.1109/REDUAS47371.2019.8999709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small multirotors are suitable to navigate in complex and confined environments that are otherwise inaccessible to larger drones. In such conditions, airflow interactions between the rotors and nearby surface take place. The most common of these interactions is the ground effect. Besides the increment in thrust efficiency, the ground effect affects the onboard sensors of the vehicle. In this paper, we present a fault diagnosis scheme and a control strategy for a multirotor with sensor faults caused by the ground effect. We assume a hierarchical control structure composed of an external PD controller and an internal PI controller. We consider that sensor faults occur on the inner loop and counteract them in the outer one. The fault diagnosis scheme is designed as a logical process which depends on the weighted residual. The control strategy combines the external controller and a function of the residual. Finally, we evaluate the effectiveness of our controller in simulation.\",\"PeriodicalId\":351115,\"journal\":{\"name\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REDUAS47371.2019.8999709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDUAS47371.2019.8999709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensor Fault Mitigation for MAVs under Ground Effect*
Small multirotors are suitable to navigate in complex and confined environments that are otherwise inaccessible to larger drones. In such conditions, airflow interactions between the rotors and nearby surface take place. The most common of these interactions is the ground effect. Besides the increment in thrust efficiency, the ground effect affects the onboard sensors of the vehicle. In this paper, we present a fault diagnosis scheme and a control strategy for a multirotor with sensor faults caused by the ground effect. We assume a hierarchical control structure composed of an external PD controller and an internal PI controller. We consider that sensor faults occur on the inner loop and counteract them in the outer one. The fault diagnosis scheme is designed as a logical process which depends on the weighted residual. The control strategy combines the external controller and a function of the residual. Finally, we evaluate the effectiveness of our controller in simulation.