激光定向能沉积技术制备Inconel 718 / ytria -稳定氧化锆(YSZ)金属基复合涂层的显微组织和力学性能

G. Ghosh, Prakhar Jain, A. Saigal, Ramesh Singh
{"title":"激光定向能沉积技术制备Inconel 718 / ytria -稳定氧化锆(YSZ)金属基复合涂层的显微组织和力学性能","authors":"G. Ghosh, Prakhar Jain, A. Saigal, Ramesh Singh","doi":"10.1115/imece2022-96945","DOIUrl":null,"url":null,"abstract":"\n Metal matrix composites (MMCs) possess a favorable combinations of mechanical, thermal, physical and metallurgical properties which can be engineered by controlling composition, concentration, size and dispersion of the ceramic particles in the metallic matrix. Laser directed energy deposition (DED) technique has the ability to fabricate MMC coatings with good mechanical properties and sound metallurgical bonding. Owing to those beneficial aspects, LDED has become one of the most important fabrication techniques of MMC. Despite of immense applications of MMCs, there has been very limited research work reported in the literature regarding the development of MMC coatings. In the present study, Inconel 718/Yttria-stabilized zirconia (YSZ) MMC coating is deposited on the H13 steel substrate via laser DED process. This MMC can find its application as ultra-high strength thermal barrier coatings in aerospace, power generation, defense equipment manufacturing and die/mold making industries. Three types of MMCs, Inconel-1 wt. % YSZ, Inconel-2 wt. % YSZ, and Inconel-3 wt. % YSZ are fabricated in order to assess the effect of YSZ weight percentage on the microstructure and mechanical properties (i.e., micro-hardness and porosity) of the MMC. Based on the mechanical properties and microstructural study, the optimum amount of YSZ in MMC is determined and it is observed that Inconel-1 wt. % YSZ composite coating exhibits better mechanical (i.e., hardness = 495 ± 7 HV, and porosity = 4 %) and metallurgical properties.","PeriodicalId":113474,"journal":{"name":"Volume 2B: Advanced Manufacturing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Mechanical Properties of Inconel 718 / Yttria-Stabilized Zirconia (YSZ) Metal Matrix Composite Coating Produced by Laser Directed Energy Deposition Technique\",\"authors\":\"G. Ghosh, Prakhar Jain, A. Saigal, Ramesh Singh\",\"doi\":\"10.1115/imece2022-96945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Metal matrix composites (MMCs) possess a favorable combinations of mechanical, thermal, physical and metallurgical properties which can be engineered by controlling composition, concentration, size and dispersion of the ceramic particles in the metallic matrix. Laser directed energy deposition (DED) technique has the ability to fabricate MMC coatings with good mechanical properties and sound metallurgical bonding. Owing to those beneficial aspects, LDED has become one of the most important fabrication techniques of MMC. Despite of immense applications of MMCs, there has been very limited research work reported in the literature regarding the development of MMC coatings. In the present study, Inconel 718/Yttria-stabilized zirconia (YSZ) MMC coating is deposited on the H13 steel substrate via laser DED process. This MMC can find its application as ultra-high strength thermal barrier coatings in aerospace, power generation, defense equipment manufacturing and die/mold making industries. Three types of MMCs, Inconel-1 wt. % YSZ, Inconel-2 wt. % YSZ, and Inconel-3 wt. % YSZ are fabricated in order to assess the effect of YSZ weight percentage on the microstructure and mechanical properties (i.e., micro-hardness and porosity) of the MMC. Based on the mechanical properties and microstructural study, the optimum amount of YSZ in MMC is determined and it is observed that Inconel-1 wt. % YSZ composite coating exhibits better mechanical (i.e., hardness = 495 ± 7 HV, and porosity = 4 %) and metallurgical properties.\",\"PeriodicalId\":113474,\"journal\":{\"name\":\"Volume 2B: Advanced Manufacturing\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-96945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-96945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属基复合材料(MMCs)具有良好的机械、热、物理和冶金性能的组合,可以通过控制金属基体中陶瓷颗粒的组成、浓度、大小和分散来设计。激光定向能沉积(DED)技术能够制备出具有良好力学性能和良好冶金结合性能的MMC涂层。由于这些有利的方面,lcd已成为MMC最重要的制造技术之一。尽管MMC具有巨大的应用前景,但文献中关于MMC涂料发展的研究工作报道非常有限。采用激光DED工艺在H13钢基体上沉积了Inconel 718/ ytria稳定氧化锆(YSZ) MMC涂层。该MMC可作为超高强度热障涂层应用于航空航天、发电、国防装备制造和模具制造等行业。制备了三种类型的MMC, Inconel-1 wt. % YSZ, Inconel-2 wt. % YSZ和Inconel-3 wt. % YSZ,以评估YSZ重量百分比对MMC的微观结构和力学性能(即显微硬度和孔隙率)的影响。通过力学性能和显微组织的研究,确定了MMC中YSZ的最佳用量,发现Inconel-1 wt. % YSZ复合镀层具有较好的力学性能(硬度= 495±7 HV,孔隙率= 4%)和金相性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and Mechanical Properties of Inconel 718 / Yttria-Stabilized Zirconia (YSZ) Metal Matrix Composite Coating Produced by Laser Directed Energy Deposition Technique
Metal matrix composites (MMCs) possess a favorable combinations of mechanical, thermal, physical and metallurgical properties which can be engineered by controlling composition, concentration, size and dispersion of the ceramic particles in the metallic matrix. Laser directed energy deposition (DED) technique has the ability to fabricate MMC coatings with good mechanical properties and sound metallurgical bonding. Owing to those beneficial aspects, LDED has become one of the most important fabrication techniques of MMC. Despite of immense applications of MMCs, there has been very limited research work reported in the literature regarding the development of MMC coatings. In the present study, Inconel 718/Yttria-stabilized zirconia (YSZ) MMC coating is deposited on the H13 steel substrate via laser DED process. This MMC can find its application as ultra-high strength thermal barrier coatings in aerospace, power generation, defense equipment manufacturing and die/mold making industries. Three types of MMCs, Inconel-1 wt. % YSZ, Inconel-2 wt. % YSZ, and Inconel-3 wt. % YSZ are fabricated in order to assess the effect of YSZ weight percentage on the microstructure and mechanical properties (i.e., micro-hardness and porosity) of the MMC. Based on the mechanical properties and microstructural study, the optimum amount of YSZ in MMC is determined and it is observed that Inconel-1 wt. % YSZ composite coating exhibits better mechanical (i.e., hardness = 495 ± 7 HV, and porosity = 4 %) and metallurgical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology for Digital Twins of Product Lifecycle Supported by Digital Thread Thermal Analysis and Design of Self-Heating Molds Using Large-Scale Additive Manufacturing for Out-of-Autoclave Applications Conveyer-Less Matrix Assembly Layout Design to Maximize Labor Productivity and Footprint Usage A Comparative Numerical Investigation on Machining of Laminated and 3D Printed CFRP Composites Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1