未知后变参数的贝叶斯最快检测

Jun Geng, L. Lai
{"title":"未知后变参数的贝叶斯最快检测","authors":"Jun Geng, L. Lai","doi":"10.1109/ICASSP.2016.7472462","DOIUrl":null,"url":null,"abstract":"In this paper, Bayesian quickest change-point detection problem with incomplete post-change information is considered. In particular, the observer knows that the post-change distribution belongs to a parametric distribution family, but he does not know the true value of the post-change parameter. Two problem formulations are considered in this paper. In the first formulation, we assume no additional prior information about the post-change parameter. In this case, the observer aims to design a detection algorithm to minimize the average (over the change-point) detection delay for all possible post-change parameters simultaneously subject to a worst case false alarm constraint. In the second formulation, we assume that there is a prior distribution on the possible value of the unknown parameter. For this case, we propose another formulation that minimizes the average (over both the change-point and the post-change parameter) detection delay subject to an average false alarm constraint. We propose a noval algorithm, which is termed as M-Shiryaev procedure, and show that the proposed algorithm is first order asymptotically optimal for both formulations considered in this paper.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bayesian quickest detection with unknown post-change parameter\",\"authors\":\"Jun Geng, L. Lai\",\"doi\":\"10.1109/ICASSP.2016.7472462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Bayesian quickest change-point detection problem with incomplete post-change information is considered. In particular, the observer knows that the post-change distribution belongs to a parametric distribution family, but he does not know the true value of the post-change parameter. Two problem formulations are considered in this paper. In the first formulation, we assume no additional prior information about the post-change parameter. In this case, the observer aims to design a detection algorithm to minimize the average (over the change-point) detection delay for all possible post-change parameters simultaneously subject to a worst case false alarm constraint. In the second formulation, we assume that there is a prior distribution on the possible value of the unknown parameter. For this case, we propose another formulation that minimizes the average (over both the change-point and the post-change parameter) detection delay subject to an average false alarm constraint. We propose a noval algorithm, which is termed as M-Shiryaev procedure, and show that the proposed algorithm is first order asymptotically optimal for both formulations considered in this paper.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了不完全变化后信息下的贝叶斯最快变化点检测问题。具体来说,观察者知道变化后的分布属于参数分布族,但他不知道变化后参数的真实值。本文考虑了两种问题的表述。在第一个公式中,我们假设没有关于变化后参数的额外先验信息。在这种情况下,观测器的目标是设计一种检测算法,使所有可能的后变化参数同时受到最坏情况虚警约束的平均(在变化点上)检测延迟最小化。在第二个公式中,我们假设未知参数的可能值有一个先验分布。对于这种情况,我们提出了另一种公式,该公式最小化受平均虚警约束的平均(在变化点和变化后参数上)检测延迟。我们提出了一种称为M-Shiryaev过程的新算法,并证明了该算法对于本文所考虑的两种公式都是一阶渐近最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian quickest detection with unknown post-change parameter
In this paper, Bayesian quickest change-point detection problem with incomplete post-change information is considered. In particular, the observer knows that the post-change distribution belongs to a parametric distribution family, but he does not know the true value of the post-change parameter. Two problem formulations are considered in this paper. In the first formulation, we assume no additional prior information about the post-change parameter. In this case, the observer aims to design a detection algorithm to minimize the average (over the change-point) detection delay for all possible post-change parameters simultaneously subject to a worst case false alarm constraint. In the second formulation, we assume that there is a prior distribution on the possible value of the unknown parameter. For this case, we propose another formulation that minimizes the average (over both the change-point and the post-change parameter) detection delay subject to an average false alarm constraint. We propose a noval algorithm, which is termed as M-Shiryaev procedure, and show that the proposed algorithm is first order asymptotically optimal for both formulations considered in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1