加拿大安大略省区域电力系统的双不确定性两阶段分式规划模型

J. Huang, C. Huang, S. Nie
{"title":"加拿大安大略省区域电力系统的双不确定性两阶段分式规划模型","authors":"J. Huang, C. Huang, S. Nie","doi":"10.3808/jeil.202200090","DOIUrl":null,"url":null,"abstract":"This study proposed a dual-uncertainty two-stage fractional power system management (DUTSF-PSM) model to deal with uncertainties and dual objectives in the power management system of Ontario. This model integrates interval linear programming (ILP), chance-constrained programming (CCP), mixed-integer linear programming (MILP), and two-stage stochastic programming (TSP) methods into the framework of a linear fractional programming (LFP) model. Two-objective issues and capacity expansion schemes under multiple uncertainties can be addressed by the DUTSF-PSM model. Economic and environmental elements are considered in the objective function of the DUTSF-PSM model at the same time in order to get maximal system benefit with minimum environmental influence. This model can tackle effectively the tradeoff between the economic and environmental objectives. Through the DUTSF-PSM model for power systems in Ontario, the maximal system efficiency based on the least environmental influence under different levels of constraint-violation probabilities can be achieved. The results indicate that both hydroelectric and wind power have development potential when the economic and environmental factors are considered in the objective function at the same time. In addition, the results of factorial analyses reflected that the effect of CO2 emission of each power generation technology on the system revenue is most significant among the chosen three factors.","PeriodicalId":143718,"journal":{"name":"Journal of Environmental Informatics Letters","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-Uncertainty Two-Stage Fractional Programming Model for Reginal Power Systems in the Province of Ontario, Canada\",\"authors\":\"J. Huang, C. Huang, S. Nie\",\"doi\":\"10.3808/jeil.202200090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposed a dual-uncertainty two-stage fractional power system management (DUTSF-PSM) model to deal with uncertainties and dual objectives in the power management system of Ontario. This model integrates interval linear programming (ILP), chance-constrained programming (CCP), mixed-integer linear programming (MILP), and two-stage stochastic programming (TSP) methods into the framework of a linear fractional programming (LFP) model. Two-objective issues and capacity expansion schemes under multiple uncertainties can be addressed by the DUTSF-PSM model. Economic and environmental elements are considered in the objective function of the DUTSF-PSM model at the same time in order to get maximal system benefit with minimum environmental influence. This model can tackle effectively the tradeoff between the economic and environmental objectives. Through the DUTSF-PSM model for power systems in Ontario, the maximal system efficiency based on the least environmental influence under different levels of constraint-violation probabilities can be achieved. The results indicate that both hydroelectric and wind power have development potential when the economic and environmental factors are considered in the objective function at the same time. In addition, the results of factorial analyses reflected that the effect of CO2 emission of each power generation technology on the system revenue is most significant among the chosen three factors.\",\"PeriodicalId\":143718,\"journal\":{\"name\":\"Journal of Environmental Informatics Letters\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Informatics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3808/jeil.202200090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jeil.202200090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对安大略省电力管理系统中的不确定性和双重目标,提出了一种双不确定性两阶段分级电力系统管理(DUTSF-PSM)模型。该模型将区间线性规划(ILP)、机会约束规划(CCP)、混合整数线性规划(MILP)和两阶段随机规划(TSP)方法集成到线性分式规划(LFP)模型的框架中。DUTSF-PSM模型可以解决多不确定条件下的双目标问题和扩容方案。在DUTSF-PSM模型的目标函数中同时考虑了经济因素和环境因素,力求以最小的环境影响获得最大的系统效益。这种模式可以有效地处理经济和环境目标之间的权衡。通过对安大略省电力系统的DUTSF-PSM模型,可以在不同的约束违反概率水平下实现基于最小环境影响的最大系统效率。结果表明,在目标函数中同时考虑经济和环境因素时,水电和风电都具有发展潜力。此外,析因分析的结果表明,在所选的三个因素中,各发电技术的CO2排放对系统收益的影响最为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dual-Uncertainty Two-Stage Fractional Programming Model for Reginal Power Systems in the Province of Ontario, Canada
This study proposed a dual-uncertainty two-stage fractional power system management (DUTSF-PSM) model to deal with uncertainties and dual objectives in the power management system of Ontario. This model integrates interval linear programming (ILP), chance-constrained programming (CCP), mixed-integer linear programming (MILP), and two-stage stochastic programming (TSP) methods into the framework of a linear fractional programming (LFP) model. Two-objective issues and capacity expansion schemes under multiple uncertainties can be addressed by the DUTSF-PSM model. Economic and environmental elements are considered in the objective function of the DUTSF-PSM model at the same time in order to get maximal system benefit with minimum environmental influence. This model can tackle effectively the tradeoff between the economic and environmental objectives. Through the DUTSF-PSM model for power systems in Ontario, the maximal system efficiency based on the least environmental influence under different levels of constraint-violation probabilities can be achieved. The results indicate that both hydroelectric and wind power have development potential when the economic and environmental factors are considered in the objective function at the same time. In addition, the results of factorial analyses reflected that the effect of CO2 emission of each power generation technology on the system revenue is most significant among the chosen three factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending Simulation Decomposition Analysis into Systemic Risk Planning for Domino-Like Cascading Effects in Environmental Systems Tracing Energy Conservation and Emission Reduction in China’s Transportation Sector Extreme Summer Precipitation Events in China and Their Changes during 1982 ~ 2019 Characteristics of Seasonal Frozen Soil in Hetao Irrigation District under Climate Change Distribution Characteristics of Soil Moisture in the Three Rivers Headwaters Region, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1