{"title":"地震波传播数值模拟的几个方面","authors":"Jingyi Chen","doi":"10.4172/2329-6755.1000E109","DOIUrl":null,"url":null,"abstract":"Copyright: © 2013 Chen J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Over the last decades, numerical simulation of seismic wave propagation has become an important tool to better understand the characterization of wave propagation and rock properties. It also plays a significant role in seismic data processing and interpretation [1]. Here, several important aspects of seismic numerical modeling of wave propagation will be mentioned, such as numerical algorithms for solving partial differential wave equations, absorbing boundary condition and high performance computing techniques.","PeriodicalId":344421,"journal":{"name":"Journal of Geology and Geosciences","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Aspects of Numerical Simulation of Seismic Wave Propagation\",\"authors\":\"Jingyi Chen\",\"doi\":\"10.4172/2329-6755.1000E109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copyright: © 2013 Chen J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Over the last decades, numerical simulation of seismic wave propagation has become an important tool to better understand the characterization of wave propagation and rock properties. It also plays a significant role in seismic data processing and interpretation [1]. Here, several important aspects of seismic numerical modeling of wave propagation will be mentioned, such as numerical algorithms for solving partial differential wave equations, absorbing boundary condition and high performance computing techniques.\",\"PeriodicalId\":344421,\"journal\":{\"name\":\"Journal of Geology and Geosciences\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-6755.1000E109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-6755.1000E109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Some Aspects of Numerical Simulation of Seismic Wave Propagation
Copyright: © 2013 Chen J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Over the last decades, numerical simulation of seismic wave propagation has become an important tool to better understand the characterization of wave propagation and rock properties. It also plays a significant role in seismic data processing and interpretation [1]. Here, several important aspects of seismic numerical modeling of wave propagation will be mentioned, such as numerical algorithms for solving partial differential wave equations, absorbing boundary condition and high performance computing techniques.