有序正交匹配追踪

Deepak Baby, S. R. Pillai
{"title":"有序正交匹配追踪","authors":"Deepak Baby, S. R. Pillai","doi":"10.1109/NCC.2012.6176775","DOIUrl":null,"url":null,"abstract":"Compressed Sensing deals with recovering sparse signals from a relatively small number of linear measurements. Several algorithms exists for data recovery from the compressed measurements, particularly appealing among these is the greedy approach known as Orthogonal Matching Pursuit (OMP). In this paper, we propose a modified OMP based algorithm called Ordered Orthogonal Matching Pursuit (Ordered OMP). Ordered OMP is conceptually simpler and provides an improved performance when compared to OMP.","PeriodicalId":178278,"journal":{"name":"2012 National Conference on Communications (NCC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ordered Orthogonal Matching Pursuit\",\"authors\":\"Deepak Baby, S. R. Pillai\",\"doi\":\"10.1109/NCC.2012.6176775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed Sensing deals with recovering sparse signals from a relatively small number of linear measurements. Several algorithms exists for data recovery from the compressed measurements, particularly appealing among these is the greedy approach known as Orthogonal Matching Pursuit (OMP). In this paper, we propose a modified OMP based algorithm called Ordered Orthogonal Matching Pursuit (Ordered OMP). Ordered OMP is conceptually simpler and provides an improved performance when compared to OMP.\",\"PeriodicalId\":178278,\"journal\":{\"name\":\"2012 National Conference on Communications (NCC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2012.6176775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2012.6176775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

压缩感知处理从相对少量的线性测量中恢复稀疏信号。存在几种从压缩测量中恢复数据的算法,其中特别吸引人的是称为正交匹配追踪(OMP)的贪婪方法。本文提出了一种改进的基于有序正交匹配追踪算法(Ordered OMP)。与OMP相比,有序OMP在概念上更简单,并且提供了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ordered Orthogonal Matching Pursuit
Compressed Sensing deals with recovering sparse signals from a relatively small number of linear measurements. Several algorithms exists for data recovery from the compressed measurements, particularly appealing among these is the greedy approach known as Orthogonal Matching Pursuit (OMP). In this paper, we propose a modified OMP based algorithm called Ordered Orthogonal Matching Pursuit (Ordered OMP). Ordered OMP is conceptually simpler and provides an improved performance when compared to OMP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantized modulation diversity for 64-QAM IITKGP-MLILSC speech database for language identification Strip lined - Truncated ground plane for flat response of miniaturized UWB patch antenna On the underwater wireless network clustering Faster BIC segmentation using local speaker modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1