基于测量误差的DCC实现模型的构建

Hideto Shigemoto, Takayuki Morimoto
{"title":"基于测量误差的DCC实现模型的构建","authors":"Hideto Shigemoto, Takayuki Morimoto","doi":"10.2139/ssrn.3817246","DOIUrl":null,"url":null,"abstract":"We propose novel conditional autoregressive Wishart (CAW) models for high-dimensional realized covariance matrices of asset returns. We incorporate measurement errors into realized variance dynamics of Realized Dynamic Conditional Correlation (Re-DCC) model. It is well known that the measurement errors make the realized volatility less persistent than the latent volatility process. Therefore, by introducing measurement errors into realized volatility, the persistence of the realized volatility based on the magnitude of the corresponding measurement errors can be incorporated into the multivariate model. Our empirical analysis performs in- and out-of-sample evaluations for 100 stocks on the Tokyo Stock Exchange from January 1, 2014, through December 31, 2020. Our model based on logarithmic realized volatility shows the best forecast performance across test periods and loss functions.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing a Realized DCC Model with Measurement Errors\",\"authors\":\"Hideto Shigemoto, Takayuki Morimoto\",\"doi\":\"10.2139/ssrn.3817246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose novel conditional autoregressive Wishart (CAW) models for high-dimensional realized covariance matrices of asset returns. We incorporate measurement errors into realized variance dynamics of Realized Dynamic Conditional Correlation (Re-DCC) model. It is well known that the measurement errors make the realized volatility less persistent than the latent volatility process. Therefore, by introducing measurement errors into realized volatility, the persistence of the realized volatility based on the magnitude of the corresponding measurement errors can be incorporated into the multivariate model. Our empirical analysis performs in- and out-of-sample evaluations for 100 stocks on the Tokyo Stock Exchange from January 1, 2014, through December 31, 2020. Our model based on logarithmic realized volatility shows the best forecast performance across test periods and loss functions.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3817246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3817246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对资产收益的高维已实现协方差矩阵,提出了一种新的条件自回归Wishart (CAW)模型。我们将测量误差纳入已实现动态条件相关(Re-DCC)模型的已实现方差动态中。众所周知,测量误差使已实现的波动率比潜在波动率过程持续时间短。因此,通过在已实现波动率中引入测量误差,可以将基于相应测量误差大小的已实现波动率的持续时间纳入多元模型。我们的实证分析对2014年1月1日至2020年12月31日期间东京证券交易所的100只股票进行了样本内和样本外评估。基于对数已实现波动率的模型显示出跨测试周期和损失函数的最佳预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing a Realized DCC Model with Measurement Errors
We propose novel conditional autoregressive Wishart (CAW) models for high-dimensional realized covariance matrices of asset returns. We incorporate measurement errors into realized variance dynamics of Realized Dynamic Conditional Correlation (Re-DCC) model. It is well known that the measurement errors make the realized volatility less persistent than the latent volatility process. Therefore, by introducing measurement errors into realized volatility, the persistence of the realized volatility based on the magnitude of the corresponding measurement errors can be incorporated into the multivariate model. Our empirical analysis performs in- and out-of-sample evaluations for 100 stocks on the Tokyo Stock Exchange from January 1, 2014, through December 31, 2020. Our model based on logarithmic realized volatility shows the best forecast performance across test periods and loss functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1