{"title":"基于Wasserstein度量的温度不确定性下暖通空调调度优化","authors":"Guanyu Tian, Q. Sun","doi":"10.1109/PESGM48719.2022.9916922","DOIUrl":null,"url":null,"abstract":"The heating, ventilation and air condition (HVAC) system consumes the most energy in commercial buildings, consisting over 60% of total energy usage in the U.S. Flexible HVAC system setpoint scheduling could potentially save building energy costs. This paper proposes a distributionally robust optimal (DRO) HVAC scheduling method that minimizes the daily operation cost with constraints of indoor air temperature comfort and mechanic operating requirement. Considering the uncertainties from ambient temperature, a Wasserstein metric-based ambiguity set is adopted to enhance the robustness against probabilistic prediction errors. The schedule is optimized under the worst-case distribution within the ambiguity set. The proposed DRO method is initially formulated as a two-stage problem and then reformulated into a tractable mixed-integer linear programming (MILP) form. The paper evaluates the feasibility and optimality of the optimized schedules for a real commercial building. The numerical results indicate that the costs of the proposed DRO method are up to 6.6% lower compared with conventional techniques of optimization under uncertainties. They also provide granular risk-benefit options for decision-makinz in demand response programs.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"58-60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal HVAC Scheduling under Temperature Uncertainty using the Wasserstein Metric\",\"authors\":\"Guanyu Tian, Q. Sun\",\"doi\":\"10.1109/PESGM48719.2022.9916922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heating, ventilation and air condition (HVAC) system consumes the most energy in commercial buildings, consisting over 60% of total energy usage in the U.S. Flexible HVAC system setpoint scheduling could potentially save building energy costs. This paper proposes a distributionally robust optimal (DRO) HVAC scheduling method that minimizes the daily operation cost with constraints of indoor air temperature comfort and mechanic operating requirement. Considering the uncertainties from ambient temperature, a Wasserstein metric-based ambiguity set is adopted to enhance the robustness against probabilistic prediction errors. The schedule is optimized under the worst-case distribution within the ambiguity set. The proposed DRO method is initially formulated as a two-stage problem and then reformulated into a tractable mixed-integer linear programming (MILP) form. The paper evaluates the feasibility and optimality of the optimized schedules for a real commercial building. The numerical results indicate that the costs of the proposed DRO method are up to 6.6% lower compared with conventional techniques of optimization under uncertainties. They also provide granular risk-benefit options for decision-makinz in demand response programs.\",\"PeriodicalId\":388672,\"journal\":{\"name\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":\"58-60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM48719.2022.9916922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal HVAC Scheduling under Temperature Uncertainty using the Wasserstein Metric
The heating, ventilation and air condition (HVAC) system consumes the most energy in commercial buildings, consisting over 60% of total energy usage in the U.S. Flexible HVAC system setpoint scheduling could potentially save building energy costs. This paper proposes a distributionally robust optimal (DRO) HVAC scheduling method that minimizes the daily operation cost with constraints of indoor air temperature comfort and mechanic operating requirement. Considering the uncertainties from ambient temperature, a Wasserstein metric-based ambiguity set is adopted to enhance the robustness against probabilistic prediction errors. The schedule is optimized under the worst-case distribution within the ambiguity set. The proposed DRO method is initially formulated as a two-stage problem and then reformulated into a tractable mixed-integer linear programming (MILP) form. The paper evaluates the feasibility and optimality of the optimized schedules for a real commercial building. The numerical results indicate that the costs of the proposed DRO method are up to 6.6% lower compared with conventional techniques of optimization under uncertainties. They also provide granular risk-benefit options for decision-makinz in demand response programs.