在支持sdn的自适应流中定义比特率水平的带宽预测方案

Ali Edan Al-Issa, A. Bentaleb, A. Barakabitze, T. Zinner, B. Ghita
{"title":"在支持sdn的自适应流中定义比特率水平的带宽预测方案","authors":"Ali Edan Al-Issa, A. Bentaleb, A. Barakabitze, T. Zinner, B. Ghita","doi":"10.23919/CNSM46954.2019.9012713","DOIUrl":null,"url":null,"abstract":"The majority of Internet video traffic today is delivered via HTTP Adaptive Streaming (HAS). Recent studies concluded that pure client-driven HAS adaptation is likely to be sub-optimal, given clients adjust quality based on local feedback. In [1], we introduced a network-assisted streaming architecture (BBGDASH) that provides bounded bitrate guidance for a video client while preserving quality control and adaptation at the client. Although BBGDASH is an efficient approach for video delivery, deploying it in a wireless network environment could result in sub-optimal decisions due to the high fluctuations. To this end, we propose in this paper an intelligent streaming architecture (denoted BBGDASH+), which leverages the power of time series forecasting to allow for an accurate and scalable networkbased guidance. Further, we conduct an initial investigation of parameter settings for the forecasting algorithms in a wireless testbed. Overall, the experimental results indicate the potential of the proposed approach to improve video delivery in wireless network conditions.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"595 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bandwidth Prediction Schemes for Defining Bitrate Levels in SDN-enabled Adaptive Streaming\",\"authors\":\"Ali Edan Al-Issa, A. Bentaleb, A. Barakabitze, T. Zinner, B. Ghita\",\"doi\":\"10.23919/CNSM46954.2019.9012713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of Internet video traffic today is delivered via HTTP Adaptive Streaming (HAS). Recent studies concluded that pure client-driven HAS adaptation is likely to be sub-optimal, given clients adjust quality based on local feedback. In [1], we introduced a network-assisted streaming architecture (BBGDASH) that provides bounded bitrate guidance for a video client while preserving quality control and adaptation at the client. Although BBGDASH is an efficient approach for video delivery, deploying it in a wireless network environment could result in sub-optimal decisions due to the high fluctuations. To this end, we propose in this paper an intelligent streaming architecture (denoted BBGDASH+), which leverages the power of time series forecasting to allow for an accurate and scalable networkbased guidance. Further, we conduct an initial investigation of parameter settings for the forecasting algorithms in a wireless testbed. Overall, the experimental results indicate the potential of the proposed approach to improve video delivery in wireless network conditions.\",\"PeriodicalId\":273818,\"journal\":{\"name\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"volume\":\"595 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM46954.2019.9012713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

今天,大多数互联网视频流量都是通过HTTP自适应流(HAS)传输的。最近的研究得出结论,考虑到客户根据本地反馈调整质量,纯客户驱动的HAS适应可能不是最优的。在[1]中,我们介绍了一种网络辅助流架构(BBGDASH),它为视频客户端提供有界比特率指导,同时保留客户端的质量控制和适应性。虽然BBGDASH是一种有效的视频传输方法,但在无线网络环境中部署它可能会由于高波动而导致次优决策。为此,我们在本文中提出了一种智能流架构(表示为BBGDASH+),它利用时间序列预测的力量来实现准确和可扩展的基于网络的指导。此外,我们在无线测试平台上对预测算法的参数设置进行了初步研究。总的来说,实验结果表明了所提出的方法在无线网络条件下改善视频传输的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bandwidth Prediction Schemes for Defining Bitrate Levels in SDN-enabled Adaptive Streaming
The majority of Internet video traffic today is delivered via HTTP Adaptive Streaming (HAS). Recent studies concluded that pure client-driven HAS adaptation is likely to be sub-optimal, given clients adjust quality based on local feedback. In [1], we introduced a network-assisted streaming architecture (BBGDASH) that provides bounded bitrate guidance for a video client while preserving quality control and adaptation at the client. Although BBGDASH is an efficient approach for video delivery, deploying it in a wireless network environment could result in sub-optimal decisions due to the high fluctuations. To this end, we propose in this paper an intelligent streaming architecture (denoted BBGDASH+), which leverages the power of time series forecasting to allow for an accurate and scalable networkbased guidance. Further, we conduct an initial investigation of parameter settings for the forecasting algorithms in a wireless testbed. Overall, the experimental results indicate the potential of the proposed approach to improve video delivery in wireless network conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow-based Throughput Prediction using Deep Learning and Real-World Network Traffic Learning From Evolving Network Data for Dependable Botnet Detection Exploring NAT Detection and Host Identification Using Machine Learning Lumped Markovian Estimation for Wi-Fi Channel Utilization Prediction An Access Control Implementation Targeting Resource-constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1