基于实例的单色图像色调映射算法

Chunzhi Gu, Chao Zhang
{"title":"基于实例的单色图像色调映射算法","authors":"Chunzhi Gu, Chao Zhang","doi":"10.1109/NicoInt50878.2020.00033","DOIUrl":null,"url":null,"abstract":"We propose an example-based tone mapping algorithm for monochrome image. Specifically, the distribution of pixel intensity of the example image is modeled with Gaussian mixture model (GMM) whose centroids are initialized by the source image. With GMM centriods iteratively shifted by expectation-maximization (EM) optimization, tone of the source image gradually approximates the example image. Experiment with qualitative results validate the effectiveness of our method.","PeriodicalId":230190,"journal":{"name":"2020 Nicograph International (NicoInt)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Example-based Tone Mapping Algorithm for Monochrome Image\",\"authors\":\"Chunzhi Gu, Chao Zhang\",\"doi\":\"10.1109/NicoInt50878.2020.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an example-based tone mapping algorithm for monochrome image. Specifically, the distribution of pixel intensity of the example image is modeled with Gaussian mixture model (GMM) whose centroids are initialized by the source image. With GMM centriods iteratively shifted by expectation-maximization (EM) optimization, tone of the source image gradually approximates the example image. Experiment with qualitative results validate the effectiveness of our method.\",\"PeriodicalId\":230190,\"journal\":{\"name\":\"2020 Nicograph International (NicoInt)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Nicograph International (NicoInt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NicoInt50878.2020.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Nicograph International (NicoInt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NicoInt50878.2020.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于实例的单色图像色调映射算法。具体来说,用高斯混合模型(GMM)对样例图像的像素强度分布进行建模,该模型的质心由源图像初始化。通过期望最大化优化(EM)迭代移动GMM质心,源图像的色调逐渐逼近样例图像。定性实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Example-based Tone Mapping Algorithm for Monochrome Image
We propose an example-based tone mapping algorithm for monochrome image. Specifically, the distribution of pixel intensity of the example image is modeled with Gaussian mixture model (GMM) whose centroids are initialized by the source image. With GMM centriods iteratively shifted by expectation-maximization (EM) optimization, tone of the source image gradually approximates the example image. Experiment with qualitative results validate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manifold Learning for Hand Drawn Sketches NicoInt 2020 Opinion A Cloud Experiment for Virtual Reality and Augmented Reality in NCHC Render Farm Image Based 3D Posture Matching in Real Time for Stone Tool Assembly NicoInt 2020 Commentary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1