{"title":"冷冻组织黑色素瘤太赫兹成像的计算研究","authors":"Zoltan Vilagosh, A. Lajevardipour, A. Wood","doi":"10.1109/ICIIBMS.2018.8550018","DOIUrl":null,"url":null,"abstract":"Terahertz radiation is highly absorbed by liquid water, with less than 0.0001% of the signal surviving to a depth of 1.0 millimeter at 0.45 terahertz, limiting the potential for imaging of human tissues. On the other hand, 90% of the terahertz signal survives in ice in the 0.1 to 1.0 terahertz band, opening the possibility of in-vivo imaging of skin lesions, particularly melanomas, to a depth of 5.0 millimeters by first freezing the skin in situ. Computational modelling of THz-frozen skin imaging indicates that contrast exists to differentiate melanomas from normal frozen skin on the basis of water content alone. If the melanin content of melanomas is a significant absorber of terahertz radiation, then melanin becomes the main contrast element. The modelling results justify the further exploration of the imaging technique with the study of ex-vivo frozen melanoma samples before progressing to in-vivo clinical trials.","PeriodicalId":430326,"journal":{"name":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Study of Frozen Tissue Melanoma Imagining at Terahertz Frequencies\",\"authors\":\"Zoltan Vilagosh, A. Lajevardipour, A. Wood\",\"doi\":\"10.1109/ICIIBMS.2018.8550018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terahertz radiation is highly absorbed by liquid water, with less than 0.0001% of the signal surviving to a depth of 1.0 millimeter at 0.45 terahertz, limiting the potential for imaging of human tissues. On the other hand, 90% of the terahertz signal survives in ice in the 0.1 to 1.0 terahertz band, opening the possibility of in-vivo imaging of skin lesions, particularly melanomas, to a depth of 5.0 millimeters by first freezing the skin in situ. Computational modelling of THz-frozen skin imaging indicates that contrast exists to differentiate melanomas from normal frozen skin on the basis of water content alone. If the melanin content of melanomas is a significant absorber of terahertz radiation, then melanin becomes the main contrast element. The modelling results justify the further exploration of the imaging technique with the study of ex-vivo frozen melanoma samples before progressing to in-vivo clinical trials.\",\"PeriodicalId\":430326,\"journal\":{\"name\":\"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS.2018.8550018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2018.8550018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Study of Frozen Tissue Melanoma Imagining at Terahertz Frequencies
Terahertz radiation is highly absorbed by liquid water, with less than 0.0001% of the signal surviving to a depth of 1.0 millimeter at 0.45 terahertz, limiting the potential for imaging of human tissues. On the other hand, 90% of the terahertz signal survives in ice in the 0.1 to 1.0 terahertz band, opening the possibility of in-vivo imaging of skin lesions, particularly melanomas, to a depth of 5.0 millimeters by first freezing the skin in situ. Computational modelling of THz-frozen skin imaging indicates that contrast exists to differentiate melanomas from normal frozen skin on the basis of water content alone. If the melanin content of melanomas is a significant absorber of terahertz radiation, then melanin becomes the main contrast element. The modelling results justify the further exploration of the imaging technique with the study of ex-vivo frozen melanoma samples before progressing to in-vivo clinical trials.