基于人工神经网络和知识的电网故障原因推理方法

Y. Shimakura, J. Inagaki, S. Fukui, S. Hori
{"title":"基于人工神经网络和知识的电网故障原因推理方法","authors":"Y. Shimakura, J. Inagaki, S. Fukui, S. Hori","doi":"10.1109/ANN.1993.264336","DOIUrl":null,"url":null,"abstract":"Understanding the cause of a fault in an electric power system in the system operation is essential for quick and adequate recovery actions such as the determination of the propriety of carrying out forced line charging and the necessity of network switching, and efficient patrolling. In this paper, the authors discuss a technique using an artificial neural network and knowledge-base for reasoning causes of power network faults and present the results obtained from a verification in which this technique was applied to a prototype system.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An artificial neural network and knowledge-based method for reasoning causes of power network faults\",\"authors\":\"Y. Shimakura, J. Inagaki, S. Fukui, S. Hori\",\"doi\":\"10.1109/ANN.1993.264336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the cause of a fault in an electric power system in the system operation is essential for quick and adequate recovery actions such as the determination of the propriety of carrying out forced line charging and the necessity of network switching, and efficient patrolling. In this paper, the authors discuss a technique using an artificial neural network and knowledge-base for reasoning causes of power network faults and present the results obtained from a verification in which this technique was applied to a prototype system.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

了解电力系统在系统运行中出现故障的原因,对于迅速采取适当的恢复行动,如确定是否进行强制线路充电和网络切换的必要性,以及有效巡逻至关重要。本文讨论了一种利用人工神经网络和知识库推理电网故障原因的技术,并给出了将该技术应用于原型系统的验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An artificial neural network and knowledge-based method for reasoning causes of power network faults
Understanding the cause of a fault in an electric power system in the system operation is essential for quick and adequate recovery actions such as the determination of the propriety of carrying out forced line charging and the necessity of network switching, and efficient patrolling. In this paper, the authors discuss a technique using an artificial neural network and knowledge-base for reasoning causes of power network faults and present the results obtained from a verification in which this technique was applied to a prototype system.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1