一种有效的峰值负荷预测方法

Liu Jin, Ziyang Liu, Jingbo Sun, Xinying Song
{"title":"一种有效的峰值负荷预测方法","authors":"Liu Jin, Ziyang Liu, Jingbo Sun, Xinying Song","doi":"10.1109/IPEC.2005.206877","DOIUrl":null,"url":null,"abstract":"This paper describes the peak load characteristics of power systems. A new method for the peak load forecasting (PLF) is proposed by means of an integration technique, which combines fuzzy clustering with feed-forward neural network (FNN) of the Levenberg-Maruardt (LM) training algorithm. Compared with the traditional back propagation (BP) algorithm, the proposed method proves more efficient to the predicted accuracy during the peak load period by using actual data of a power grid in China","PeriodicalId":164802,"journal":{"name":"2005 International Power Engineering Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient method for peak load forecasting\",\"authors\":\"Liu Jin, Ziyang Liu, Jingbo Sun, Xinying Song\",\"doi\":\"10.1109/IPEC.2005.206877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the peak load characteristics of power systems. A new method for the peak load forecasting (PLF) is proposed by means of an integration technique, which combines fuzzy clustering with feed-forward neural network (FNN) of the Levenberg-Maruardt (LM) training algorithm. Compared with the traditional back propagation (BP) algorithm, the proposed method proves more efficient to the predicted accuracy during the peak load period by using actual data of a power grid in China\",\"PeriodicalId\":164802,\"journal\":{\"name\":\"2005 International Power Engineering Conference\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Power Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEC.2005.206877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEC.2005.206877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了电力系统的峰值负荷特性。将模糊聚类与levenberg - marward (LM)训练算法中的前馈神经网络(FNN)相结合,提出了一种新的峰值负荷预测方法。与传统的反向传播(BP)算法相比,利用中国电网的实际数据验证了该方法在高峰负荷时段的预测精度更高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient method for peak load forecasting
This paper describes the peak load characteristics of power systems. A new method for the peak load forecasting (PLF) is proposed by means of an integration technique, which combines fuzzy clustering with feed-forward neural network (FNN) of the Levenberg-Maruardt (LM) training algorithm. Compared with the traditional back propagation (BP) algorithm, the proposed method proves more efficient to the predicted accuracy during the peak load period by using actual data of a power grid in China
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of association rule mining in power system restoration The influence of model mismatch to power system calculation, part II: on the stability calculation Optimal participation of a microgrid to the energy market with an intelligent EMS An account of a modified lightning protection system for power stations An improved usage allocation method for deregulated transmission systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1