{"title":"具有开伽罗瓦象的主极化阿贝尔变象的象导体的界","authors":"Jacob Mayle","doi":"10.1090/bproc/131","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a principally polarized abelian variety of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over a number field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Assume that the image of the adelic Galois representation of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an open subgroup of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper S p Subscript 2 g Baseline left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mi>S</mml:mi>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">GSp_{2g}(\\hat {\\mathbb {Z}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Then there exists a positive integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> so that the Galois image of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the full preimage of its reduction modulo <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The least <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with this property, denoted <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m Subscript upper A\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mi>A</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">m_A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, is called the <italic>image conductor</italic> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Jones [Pacific J. Math. 308 (2020), pp. 307–331] recently established an upper bound for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m Subscript upper A\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mi>A</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">m_A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, in terms of standard invariants of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, in the case that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an elliptic curve without complex multiplication. In this paper, we generalize the aforementioned result to provide an analogous bound in arbitrary dimension.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bound for the image conductor of a principally polarized abelian variety with open Galois image\",\"authors\":\"Jacob Mayle\",\"doi\":\"10.1090/bproc/131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a principally polarized abelian variety of dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over a number field <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\">\\n <mml:semantics>\\n <mml:mi>K</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Assume that the image of the adelic Galois representation of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an open subgroup of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper S p Subscript 2 g Baseline left-parenthesis ModifyingAbove double-struck upper Z With caret right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:mi>S</mml:mi>\\n <mml:msub>\\n <mml:mi>p</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">GSp_{2g}(\\\\hat {\\\\mathbb {Z}})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Then there exists a positive integer <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\">\\n <mml:semantics>\\n <mml:mi>m</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> so that the Galois image of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the full preimage of its reduction modulo <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\">\\n <mml:semantics>\\n <mml:mi>m</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The least <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\">\\n <mml:semantics>\\n <mml:mi>m</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with this property, denoted <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m Subscript upper A\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>m</mml:mi>\\n <mml:mi>A</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m_A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, is called the <italic>image conductor</italic> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Jones [Pacific J. Math. 308 (2020), pp. 307–331] recently established an upper bound for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m Subscript upper A\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>m</mml:mi>\\n <mml:mi>A</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">m_A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, in terms of standard invariants of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, in the case that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an elliptic curve without complex multiplication. In this paper, we generalize the aforementioned result to provide an analogous bound in arbitrary dimension.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设A A是数域K K上的维g g的主极化阿贝尔变换。假设A的亚历伽罗瓦表示的象是GSp 2g (Z ^) GSp_{2g}(\hat {\mathbb {Z}})的开子群。则存在正整数m m,使得a a的伽罗瓦像是其约化模m m的完整原像。具有这种性质的最小的m m记为m A m_A,称为A A的像导体。Jones [Pacific J. Math. 308 (2020), pp. 307-331]最近在A A为椭圆曲线且没有复数乘法的情况下,根据A A的标准不变量建立了m A m_A的上界。在本文中,我们推广了上述结果,给出了任意维上的一个类似界。
A bound for the image conductor of a principally polarized abelian variety with open Galois image
Let AA be a principally polarized abelian variety of dimension gg over a number field KK. Assume that the image of the adelic Galois representation of AA is an open subgroup of GSp2g(Z^)GSp_{2g}(\hat {\mathbb {Z}}). Then there exists a positive integer mm so that the Galois image of AA is the full preimage of its reduction modulo mm. The least mm with this property, denoted mAm_A, is called the image conductor of AA. Jones [Pacific J. Math. 308 (2020), pp. 307–331] recently established an upper bound for mAm_A, in terms of standard invariants of AA, in the case that AA is an elliptic curve without complex multiplication. In this paper, we generalize the aforementioned result to provide an analogous bound in arbitrary dimension.