梯度学习方法在瞬态电磁数据像元反演中的应用

Rui Guo, Maokun Li, Fan Yang, Shenheng Xu, G. Fang, A. Abubakar
{"title":"梯度学习方法在瞬态电磁数据像元反演中的应用","authors":"Rui Guo, Maokun Li, Fan Yang, Shenheng Xu, G. Fang, A. Abubakar","doi":"10.1109/COMPEM.2018.8496518","DOIUrl":null,"url":null,"abstract":"Traditional gradient descent inversion for transient electromagnetic (TEM) data is time and memory comsuming because the derivative matrices need to be computed repeatly. In this paper, we apply the Supervised Descent Method (SDM) into pixel-based inversion for TEM data. This method is based on the concept of gradient learning. In an offline stage, the average descent direction can be learned from a set of training data; and in an online stage, data inversion can be achieved by the learned descent directions without computing the derivative matrices. Numerical tests verify that this algorithm converges faster and is also more efficient. Moreover, SDM offers a more convinient way to incorporate prior information into inversion that could improve the efficiency of data interpretation.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of Gradient Learning Scheme to Pixel-Based Inversion for Transient EM Data\",\"authors\":\"Rui Guo, Maokun Li, Fan Yang, Shenheng Xu, G. Fang, A. Abubakar\",\"doi\":\"10.1109/COMPEM.2018.8496518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional gradient descent inversion for transient electromagnetic (TEM) data is time and memory comsuming because the derivative matrices need to be computed repeatly. In this paper, we apply the Supervised Descent Method (SDM) into pixel-based inversion for TEM data. This method is based on the concept of gradient learning. In an offline stage, the average descent direction can be learned from a set of training data; and in an online stage, data inversion can be achieved by the learned descent directions without computing the derivative matrices. Numerical tests verify that this algorithm converges faster and is also more efficient. Moreover, SDM offers a more convinient way to incorporate prior information into inversion that could improve the efficiency of data interpretation.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

传统的瞬变电磁(TEM)数据梯度下降反演由于导数矩阵需要反复计算,费时耗量大。本文将监督下降法(SDM)应用于TEM数据的基于像素的反演。该方法基于梯度学习的概念。在离线阶段,平均下降方向可以从一组训练数据中学习;在在线阶段,可以通过学习的下降方向来实现数据的反演,而不需要计算导数矩阵。数值实验表明,该算法收敛速度快,效率高。此外,SDM提供了一种更方便的将先验信息纳入反演的方法,可以提高数据解释的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Gradient Learning Scheme to Pixel-Based Inversion for Transient EM Data
Traditional gradient descent inversion for transient electromagnetic (TEM) data is time and memory comsuming because the derivative matrices need to be computed repeatly. In this paper, we apply the Supervised Descent Method (SDM) into pixel-based inversion for TEM data. This method is based on the concept of gradient learning. In an offline stage, the average descent direction can be learned from a set of training data; and in an online stage, data inversion can be achieved by the learned descent directions without computing the derivative matrices. Numerical tests verify that this algorithm converges faster and is also more efficient. Moreover, SDM offers a more convinient way to incorporate prior information into inversion that could improve the efficiency of data interpretation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designs of Compact, Planar, Wideband, Monopole Filtennas with Near-Field Resonant Parasitic Elements A Fast and High Order Algorithm for the Electromagnetic Scattering of Axis-Symmetric Objects A New Approach of Individually Control of Shorting Posts for Pattern Reconfigurable Antenna Designs X-Band Low Phase Noise Oscillator Based on Hybrid SIW Cavity Resonator Wideband CP Polarization and Pattern Reconfigurable Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1