基于集成聚类和图割优化方法的低景深图像兴趣区域自动分割

Gholamreza Rafiee, S. Dlay, W. L. Woo
{"title":"基于集成聚类和图割优化方法的低景深图像兴趣区域自动分割","authors":"Gholamreza Rafiee, S. Dlay, W. L. Woo","doi":"10.1109/ISM.2012.39","DOIUrl":null,"url":null,"abstract":"Automatic segmentation of images with low depth of field (DOF) plays an important role in content-based multimedia applications. The proposed approach aims to separate the important objects (i.e., interest regions) of a given image from its defocused background in two stages. In stage one, image blocks are classified into object and background blocks using a novel cluster ensemble algorithm. By indicating the certain pixels (seeds) of the object and background blocks, a hard constraint is provided for the next stage of the approach. In stage two, a minimal graph cut is constructed using object and background seeds, which is based on the max-flow method. Experimental results for a wide range of busy-texture (i.e., noisy) and smooth regions demonstrate that the proposed approach provides better segmentation performance at higher speed compared with the state-of-the-art approaches.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"492 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic Segmentation of Interest Regions in Low Depth of Field Images Using Ensemble Clustering and Graph Cut Optimization Approaches\",\"authors\":\"Gholamreza Rafiee, S. Dlay, W. L. Woo\",\"doi\":\"10.1109/ISM.2012.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic segmentation of images with low depth of field (DOF) plays an important role in content-based multimedia applications. The proposed approach aims to separate the important objects (i.e., interest regions) of a given image from its defocused background in two stages. In stage one, image blocks are classified into object and background blocks using a novel cluster ensemble algorithm. By indicating the certain pixels (seeds) of the object and background blocks, a hard constraint is provided for the next stage of the approach. In stage two, a minimal graph cut is constructed using object and background seeds, which is based on the max-flow method. Experimental results for a wide range of busy-texture (i.e., noisy) and smooth regions demonstrate that the proposed approach provides better segmentation performance at higher speed compared with the state-of-the-art approaches.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"492 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

低景深图像的自动分割在基于内容的多媒体应用中起着重要的作用。该方法旨在分两个阶段将给定图像的重要目标(即感兴趣区域)从散焦背景中分离出来。在第一阶段,使用一种新的聚类集成算法将图像块划分为目标块和背景块。通过指示对象和背景块的特定像素(种子),为该方法的下一阶段提供了硬约束。第二阶段,基于最大流方法,利用对象和背景种子构造最小图割;实验结果表明,在大范围的繁忙纹理(即噪声)和光滑区域,与现有方法相比,该方法在更高的速度下具有更好的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Segmentation of Interest Regions in Low Depth of Field Images Using Ensemble Clustering and Graph Cut Optimization Approaches
Automatic segmentation of images with low depth of field (DOF) plays an important role in content-based multimedia applications. The proposed approach aims to separate the important objects (i.e., interest regions) of a given image from its defocused background in two stages. In stage one, image blocks are classified into object and background blocks using a novel cluster ensemble algorithm. By indicating the certain pixels (seeds) of the object and background blocks, a hard constraint is provided for the next stage of the approach. In stage two, a minimal graph cut is constructed using object and background seeds, which is based on the max-flow method. Experimental results for a wide range of busy-texture (i.e., noisy) and smooth regions demonstrate that the proposed approach provides better segmentation performance at higher speed compared with the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1