使用机器学习方法预测成瘾障碍易感性

Arpana Prasad, V. Asha, A. P. Nirmala, Madhushree S., Mrinal Kumar, S. Sreeja
{"title":"使用机器学习方法预测成瘾障碍易感性","authors":"Arpana Prasad, V. Asha, A. P. Nirmala, Madhushree S., Mrinal Kumar, S. Sreeja","doi":"10.1109/ICAIS56108.2023.10073701","DOIUrl":null,"url":null,"abstract":"This study explores the use of machine learning approaches for addiction prediction. Addiction is a major public health problem, and there is a need for reliable methods of predicting which individuals are at risk for developing substance use disorders. Machine learning has emerged as a powerful tool for predictive modelling, and has been applied successfully to a variety of tasks in the field of medicine. A proposed Machine Learning model for addiction prediction from an ongoing study is presented in this paper.","PeriodicalId":164345,"journal":{"name":"2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addictive Disorder Susceptibility Prediction Using Machine Learning Approaches\",\"authors\":\"Arpana Prasad, V. Asha, A. P. Nirmala, Madhushree S., Mrinal Kumar, S. Sreeja\",\"doi\":\"10.1109/ICAIS56108.2023.10073701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the use of machine learning approaches for addiction prediction. Addiction is a major public health problem, and there is a need for reliable methods of predicting which individuals are at risk for developing substance use disorders. Machine learning has emerged as a powerful tool for predictive modelling, and has been applied successfully to a variety of tasks in the field of medicine. A proposed Machine Learning model for addiction prediction from an ongoing study is presented in this paper.\",\"PeriodicalId\":164345,\"journal\":{\"name\":\"2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIS56108.2023.10073701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIS56108.2023.10073701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探索了机器学习方法在成瘾预测中的应用。成瘾是一个主要的公共卫生问题,需要可靠的方法来预测哪些人有发展物质使用障碍的风险。机器学习已成为预测建模的强大工具,并已成功应用于医学领域的各种任务。本文提出了一种正在进行的研究中用于成瘾预测的机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addictive Disorder Susceptibility Prediction Using Machine Learning Approaches
This study explores the use of machine learning approaches for addiction prediction. Addiction is a major public health problem, and there is a need for reliable methods of predicting which individuals are at risk for developing substance use disorders. Machine learning has emerged as a powerful tool for predictive modelling, and has been applied successfully to a variety of tasks in the field of medicine. A proposed Machine Learning model for addiction prediction from an ongoing study is presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heuristics based Segmentation of Left Ventricle in Cardiac MR Images Hybrid CNNLBP using Facial Emotion Recognition based on Deep Learning Approach ANN Based Static Var Compensator For Improved Power System Security Photovoltaic System based Interleaved Converter for Grid System Effective Location-based Recommendation Systems for Holiday using RBM Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1