Sunny Amatya, Mukesh Ghimire, Yi Ren, Zheng Xu, Wenlong Zhang
{"title":"我该何时估计你的意图?多智能体交互中意图推理的成本与收益","authors":"Sunny Amatya, Mukesh Ghimire, Yi Ren, Zheng Xu, Wenlong Zhang","doi":"10.23919/ACC53348.2022.9867155","DOIUrl":null,"url":null,"abstract":"This paper addresses incomplete-information dynamic games, where reward parameters of agents are private. Previous studies have shown that online belief update is necessary for deriving equilibrial policies of such games, especially for high-risk games such as vehicle interactions. However, updating beliefs in real time is computationally expensive as it requires continuous computation of Nash equilibria of the sub-games starting from the current states. In this paper, we consider the triggering mechanism of belief update as a policy defined on the agents’ physical and belief states, and propose learning this policy through reinforcement learning (RL). Using a two-vehicle uncontrolled intersection case, we show that intermittent belief update via RL is sufficient for safe interactions, reducing the computation cost of updates by 59% when agents have full observations of physical states. Simulation results also show that the belief update frequency will increase as noise becomes more significant in measurements of the vehicle positions.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"101 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When Shall I Estimate Your Intent? Costs and Benefits of Intent Inference in Multi-Agent Interactions\",\"authors\":\"Sunny Amatya, Mukesh Ghimire, Yi Ren, Zheng Xu, Wenlong Zhang\",\"doi\":\"10.23919/ACC53348.2022.9867155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses incomplete-information dynamic games, where reward parameters of agents are private. Previous studies have shown that online belief update is necessary for deriving equilibrial policies of such games, especially for high-risk games such as vehicle interactions. However, updating beliefs in real time is computationally expensive as it requires continuous computation of Nash equilibria of the sub-games starting from the current states. In this paper, we consider the triggering mechanism of belief update as a policy defined on the agents’ physical and belief states, and propose learning this policy through reinforcement learning (RL). Using a two-vehicle uncontrolled intersection case, we show that intermittent belief update via RL is sufficient for safe interactions, reducing the computation cost of updates by 59% when agents have full observations of physical states. Simulation results also show that the belief update frequency will increase as noise becomes more significant in measurements of the vehicle positions.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"101 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When Shall I Estimate Your Intent? Costs and Benefits of Intent Inference in Multi-Agent Interactions
This paper addresses incomplete-information dynamic games, where reward parameters of agents are private. Previous studies have shown that online belief update is necessary for deriving equilibrial policies of such games, especially for high-risk games such as vehicle interactions. However, updating beliefs in real time is computationally expensive as it requires continuous computation of Nash equilibria of the sub-games starting from the current states. In this paper, we consider the triggering mechanism of belief update as a policy defined on the agents’ physical and belief states, and propose learning this policy through reinforcement learning (RL). Using a two-vehicle uncontrolled intersection case, we show that intermittent belief update via RL is sufficient for safe interactions, reducing the computation cost of updates by 59% when agents have full observations of physical states. Simulation results also show that the belief update frequency will increase as noise becomes more significant in measurements of the vehicle positions.