{"title":"冗余机械手避障及运动学逆解最小二乘","authors":"M. Bodur, A. Ersak","doi":"10.1109/ROMAN.1993.367739","DOIUrl":null,"url":null,"abstract":"An 8 degree-or-freedom (DOF) redundant manipulator is designed and realized for uses in robot-human environments requiring obstacle avoidance. The extra two DOF provides the flexibility in kinematics for obstacle avoidance. The modular mechanical structure associates both simple mechanical construction and an easy forward kinematics solution. A motor-control module is implemented to perform a constant acceleration motion in accordance with the commands from a host computer. The inverse kinematics solution of the redundant manipulator is introduced by using the forward kinematics with the recursive least squares estimation (RLSE) method. The RLSE method is applied for the linearized model of the nonlinear kinematics around the operating point.<<ETX>>","PeriodicalId":270591,"journal":{"name":"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Redundant manipulator for obstacle avoidance and inverse kinematics solution by least squares\",\"authors\":\"M. Bodur, A. Ersak\",\"doi\":\"10.1109/ROMAN.1993.367739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An 8 degree-or-freedom (DOF) redundant manipulator is designed and realized for uses in robot-human environments requiring obstacle avoidance. The extra two DOF provides the flexibility in kinematics for obstacle avoidance. The modular mechanical structure associates both simple mechanical construction and an easy forward kinematics solution. A motor-control module is implemented to perform a constant acceleration motion in accordance with the commands from a host computer. The inverse kinematics solution of the redundant manipulator is introduced by using the forward kinematics with the recursive least squares estimation (RLSE) method. The RLSE method is applied for the linearized model of the nonlinear kinematics around the operating point.<<ETX>>\",\"PeriodicalId\":270591,\"journal\":{\"name\":\"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.1993.367739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.1993.367739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Redundant manipulator for obstacle avoidance and inverse kinematics solution by least squares
An 8 degree-or-freedom (DOF) redundant manipulator is designed and realized for uses in robot-human environments requiring obstacle avoidance. The extra two DOF provides the flexibility in kinematics for obstacle avoidance. The modular mechanical structure associates both simple mechanical construction and an easy forward kinematics solution. A motor-control module is implemented to perform a constant acceleration motion in accordance with the commands from a host computer. The inverse kinematics solution of the redundant manipulator is introduced by using the forward kinematics with the recursive least squares estimation (RLSE) method. The RLSE method is applied for the linearized model of the nonlinear kinematics around the operating point.<>