{"title":"Maximin自适应阵列算法","authors":"R. Mathis, K. Kaufman","doi":"10.1109/MILCOM.1982.4805978","DOIUrl":null,"url":null,"abstract":"A new algorithm for adaptively steering antenna pattern nulls while maintaining a pattern maximum on a desired signal is described. The derivation is carried out by maximizing an estimate of the signal-power-to-interference-power ratio. The resulting algorithm employs double loops; one set maximizes the desired signal power and the other set minimizes the interference power. The MAXIMIN algorithm does not require detailed knowledge of the received signal. Rather, it requires only that the desired signal plus interference and noise be separated from interference and noise alone. A detailed simulation of a spread-spectrum (FH/PN) modem incorporating the MAXIMIN algorithm has been developed. The simulation incorporates all known hardware effects having a significant impact on the operation of the algorithm such as: differing group delays of critical filters, nonlinear effects in the cross-correlation multipliers, limited bit resolution in A/D and D/A converters, and mutual coupling between the array elements. Excellent performance in terms of convergence speed and final signal-to-noise ratio is obtained over a wide range of interference conditions. This approach appears to be well suited to frequency-hopping modems.","PeriodicalId":179832,"journal":{"name":"MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximin Adaptive Array Algorithm\",\"authors\":\"R. Mathis, K. Kaufman\",\"doi\":\"10.1109/MILCOM.1982.4805978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm for adaptively steering antenna pattern nulls while maintaining a pattern maximum on a desired signal is described. The derivation is carried out by maximizing an estimate of the signal-power-to-interference-power ratio. The resulting algorithm employs double loops; one set maximizes the desired signal power and the other set minimizes the interference power. The MAXIMIN algorithm does not require detailed knowledge of the received signal. Rather, it requires only that the desired signal plus interference and noise be separated from interference and noise alone. A detailed simulation of a spread-spectrum (FH/PN) modem incorporating the MAXIMIN algorithm has been developed. The simulation incorporates all known hardware effects having a significant impact on the operation of the algorithm such as: differing group delays of critical filters, nonlinear effects in the cross-correlation multipliers, limited bit resolution in A/D and D/A converters, and mutual coupling between the array elements. Excellent performance in terms of convergence speed and final signal-to-noise ratio is obtained over a wide range of interference conditions. This approach appears to be well suited to frequency-hopping modems.\",\"PeriodicalId\":179832,\"journal\":{\"name\":\"MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.1982.4805978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.1982.4805978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种自适应控制天线方向图零点的算法,同时在期望信号上保持方向图最大值。推导是通过最大化信号功率-干扰功率比的估计来实现的。结果算法采用双循环;一组使所需的信号功率最大化,另一组使干扰功率最小化。MAXIMIN算法不需要详细了解接收信号。相反,它只要求将期望的信号加上干扰和噪声与单独的干扰和噪声分开。详细模拟了一个扩频(FH/PN)调制解调器结合MAXIMIN算法已开发。仿真包含了所有已知的对算法操作有重大影响的硬件效应,例如:关键滤波器的不同组延迟,相互关联乘法器的非线性效应,a /D和D/ a转换器的有限位分辨率,以及阵列元素之间的相互耦合。在广泛的干扰条件下,在收敛速度和最终信噪比方面具有优异的性能。这种方法似乎很适合跳频调制解调器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximin Adaptive Array Algorithm
A new algorithm for adaptively steering antenna pattern nulls while maintaining a pattern maximum on a desired signal is described. The derivation is carried out by maximizing an estimate of the signal-power-to-interference-power ratio. The resulting algorithm employs double loops; one set maximizes the desired signal power and the other set minimizes the interference power. The MAXIMIN algorithm does not require detailed knowledge of the received signal. Rather, it requires only that the desired signal plus interference and noise be separated from interference and noise alone. A detailed simulation of a spread-spectrum (FH/PN) modem incorporating the MAXIMIN algorithm has been developed. The simulation incorporates all known hardware effects having a significant impact on the operation of the algorithm such as: differing group delays of critical filters, nonlinear effects in the cross-correlation multipliers, limited bit resolution in A/D and D/A converters, and mutual coupling between the array elements. Excellent performance in terms of convergence speed and final signal-to-noise ratio is obtained over a wide range of interference conditions. This approach appears to be well suited to frequency-hopping modems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Correction Coding Performance Bounds for Spread Spectrum Systems Advanced Technology Testbeds for Distributed, Survivable Command, Control and Communications (C3) Network Response Times of a Spread Spectrum System with Large Number of Network Terminals and Central Control Effects of Frequency-Selective Fading on Slow-Frequency-Hopped DPSK Spread-Spectrum Multiple-Access Communications Multiple Dwell Serial Acquisition for Direct Sequence Spread Spectrum Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1