基于图像的电子商务产品分类迁移学习框架

Vrushali Atul Surve, Pramod Pathak, Mohammed Hasanuzzaman, Rejwanul Haque, Paul Stynes
{"title":"基于图像的电子商务产品分类迁移学习框架","authors":"Vrushali Atul Surve, Pramod Pathak, Mohammed Hasanuzzaman, Rejwanul Haque, Paul Stynes","doi":"10.1145/3556677.3556689","DOIUrl":null,"url":null,"abstract":"Classification of e-commerce products involves identifying the products and placing those products into the correct category. For example, men’s Nike Air Max will be in the men’s category shoes on an e-Commerce platform. Identifying the correct classification of a product from hundreds of categories is time-consuming for businesses. This research proposes an Image-based Transfer Learning Framework to classify the images into the correct category in the shortest time. The framework combines Image-based algorithms with Transfer Learning. This research compares the time to predict the category and accuracy of traditional CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. A visual classifier is trained CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. The models are trained on an e-commerce product dataset that combines the ImageNet dataset with pre-trained weights. The dataset consists of 15000 images scraped from the web. Results demonstrate that Inception V3 outperforms all other models based on a TIMING of 0.10 seconds and an accuracy of 85%.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Image-based Transfer Learning Framework for Classification of E-Commerce Products\",\"authors\":\"Vrushali Atul Surve, Pramod Pathak, Mohammed Hasanuzzaman, Rejwanul Haque, Paul Stynes\",\"doi\":\"10.1145/3556677.3556689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of e-commerce products involves identifying the products and placing those products into the correct category. For example, men’s Nike Air Max will be in the men’s category shoes on an e-Commerce platform. Identifying the correct classification of a product from hundreds of categories is time-consuming for businesses. This research proposes an Image-based Transfer Learning Framework to classify the images into the correct category in the shortest time. The framework combines Image-based algorithms with Transfer Learning. This research compares the time to predict the category and accuracy of traditional CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. A visual classifier is trained CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. The models are trained on an e-commerce product dataset that combines the ImageNet dataset with pre-trained weights. The dataset consists of 15000 images scraped from the web. Results demonstrate that Inception V3 outperforms all other models based on a TIMING of 0.10 seconds and an accuracy of 85%.\",\"PeriodicalId\":350340,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556677.3556689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电子商务产品的分类包括识别产品并将这些产品放入正确的类别中。例如,男士耐克Air Max将在电子商务平台上的男士类鞋中。从数百个类别中确定产品的正确分类对企业来说是非常耗时的。本研究提出了一种基于图像的迁移学习框架,在最短的时间内将图像分类到正确的类别中。该框架结合了基于图像的算法和迁移学习。本研究比较了传统CNN和迁移学习模型(如VGG19、InceptionV3、ResNet50和MobileNet)预测类别的时间和准确性。视觉分类器训练CNN和迁移学习模型,如VGG19、InceptionV3、ResNet50和MobileNet。模型在电子商务产品数据集上进行训练,该数据集结合了ImageNet数据集和预训练的权重。该数据集由15000张从网络上抓取的图像组成。结果表明,基于0.10秒的TIMING和85%的准确率,Inception V3优于所有其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Image-based Transfer Learning Framework for Classification of E-Commerce Products
Classification of e-commerce products involves identifying the products and placing those products into the correct category. For example, men’s Nike Air Max will be in the men’s category shoes on an e-Commerce platform. Identifying the correct classification of a product from hundreds of categories is time-consuming for businesses. This research proposes an Image-based Transfer Learning Framework to classify the images into the correct category in the shortest time. The framework combines Image-based algorithms with Transfer Learning. This research compares the time to predict the category and accuracy of traditional CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. A visual classifier is trained CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. The models are trained on an e-commerce product dataset that combines the ImageNet dataset with pre-trained weights. The dataset consists of 15000 images scraped from the web. Results demonstrate that Inception V3 outperforms all other models based on a TIMING of 0.10 seconds and an accuracy of 85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Fake News on Social Media by CSIBERT Automated Recognition of Oracle Bone Inscriptions Using Deep Learning and Data Augmentation Weather Recognition Based on Still Images Using Deep Learning Neural Network with Resnet-15 Ultrasonic scanning image defect detection of plastic packaging components based on FCOS Household Load Identification Based on Multi-label and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1