{"title":"计算效率特征对预测模型的意义和重要性","authors":"Enguerrand Horel, K. Giesecke","doi":"10.1145/3533271.3561713","DOIUrl":null,"url":null,"abstract":"We develop a simple and computationally efficient significance test for the features of a predictive model. Our forward-selection approach applies to any model specification, learning task and variable type. The test is non-asymptotic, straightforward to implement, and does not require model refitting. It identifies the statistically significant features as well as feature interactions of any order in a hierarchical manner, and generates a model-free notion of feature importance. This testing procedure can be used for model and variable selection. Experimental and empirical results illustrate its performance.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computationally Efficient Feature Significance and Importance for Predictive Models\",\"authors\":\"Enguerrand Horel, K. Giesecke\",\"doi\":\"10.1145/3533271.3561713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a simple and computationally efficient significance test for the features of a predictive model. Our forward-selection approach applies to any model specification, learning task and variable type. The test is non-asymptotic, straightforward to implement, and does not require model refitting. It identifies the statistically significant features as well as feature interactions of any order in a hierarchical manner, and generates a model-free notion of feature importance. This testing procedure can be used for model and variable selection. Experimental and empirical results illustrate its performance.\",\"PeriodicalId\":134888,\"journal\":{\"name\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533271.3561713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computationally Efficient Feature Significance and Importance for Predictive Models
We develop a simple and computationally efficient significance test for the features of a predictive model. Our forward-selection approach applies to any model specification, learning task and variable type. The test is non-asymptotic, straightforward to implement, and does not require model refitting. It identifies the statistically significant features as well as feature interactions of any order in a hierarchical manner, and generates a model-free notion of feature importance. This testing procedure can be used for model and variable selection. Experimental and empirical results illustrate its performance.