可再生能源集成柔性能源方法的机器学习分析与电力平衡功率动态预测

A. Essl, André Ortner, R. Haas, Peter Hettegger
{"title":"可再生能源集成柔性能源方法的机器学习分析与电力平衡功率动态预测","authors":"A. Essl, André Ortner, R. Haas, Peter Hettegger","doi":"10.1109/EEM.2017.7981877","DOIUrl":null,"url":null,"abstract":"One of the most important instruments to be able to provide the needed level of flexibility in the electricity system supporting renewable energy integration are balancing markets. We propose a dynamic approach of balancing procurement using machine learning algorithms. We apply a simulation for a Dynamic Day-Ahead Dimensioning Model to the Austrian delta control area. By using public data on renewables, generation and load we show that dynamic dimensioning and procurement of balancing power enables savings in comparison to static dimensioning and procurement with the same level of security.","PeriodicalId":416082,"journal":{"name":"2017 14th International Conference on the European Energy Market (EEM)","volume":"39 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Machine learning analysis for a flexibility energy approach towards renewable energy integration with dynamic forecasting of electricity balancing power\",\"authors\":\"A. Essl, André Ortner, R. Haas, Peter Hettegger\",\"doi\":\"10.1109/EEM.2017.7981877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important instruments to be able to provide the needed level of flexibility in the electricity system supporting renewable energy integration are balancing markets. We propose a dynamic approach of balancing procurement using machine learning algorithms. We apply a simulation for a Dynamic Day-Ahead Dimensioning Model to the Austrian delta control area. By using public data on renewables, generation and load we show that dynamic dimensioning and procurement of balancing power enables savings in comparison to static dimensioning and procurement with the same level of security.\",\"PeriodicalId\":416082,\"journal\":{\"name\":\"2017 14th International Conference on the European Energy Market (EEM)\",\"volume\":\"39 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Conference on the European Energy Market (EEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEM.2017.7981877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Conference on the European Energy Market (EEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEM.2017.7981877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

能够在电力系统中提供支持可再生能源整合所需的灵活性水平的最重要工具之一是平衡市场。我们提出了一种使用机器学习算法平衡采购的动态方法。我们将动态日前量纲模型的模拟应用于奥地利三角洲控制区。通过使用有关可再生能源、发电和负荷的公共数据,我们表明,与具有相同安全级别的静态尺寸和采购相比,动态尺寸和采购平衡电力可以节省成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning analysis for a flexibility energy approach towards renewable energy integration with dynamic forecasting of electricity balancing power
One of the most important instruments to be able to provide the needed level of flexibility in the electricity system supporting renewable energy integration are balancing markets. We propose a dynamic approach of balancing procurement using machine learning algorithms. We apply a simulation for a Dynamic Day-Ahead Dimensioning Model to the Austrian delta control area. By using public data on renewables, generation and load we show that dynamic dimensioning and procurement of balancing power enables savings in comparison to static dimensioning and procurement with the same level of security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market integration VS temporal granularity: How to provide needed flexibility resources? FV-battery community energy systems: Economic, energy independence and network deferral analysis Adequacy of power capacity during winter peaks in Finland An analysis of market mechanism and bidding strategy for power balancing market mixed by conventional and renewable energy Network pricing for smart grids considering customers' diversified contribution to system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1