{"title":"下行毫米波通信中联合波束宽度和并发波束数估计","authors":"Nancy Varshney, S. De","doi":"10.1109/NCC52529.2021.9530054","DOIUrl":null,"url":null,"abstract":"This paper proposes a sectored-cell framework for mmWave communication. It consists of multiple concurrent beams generated from a partially-connected hybrid precoder at an eNodeB (eNB) to serve a dense user population in urban scenarios. Multiple beams sweep the cell in a round-robin fashion to serve the sectors with fair scheduling opportunities. Each beam serves all the users located within a sector using orthogonal frequency division multiple access. We aim to estimate an optimum beamwidth and an optimum number of beams required to maximize the average of long-run user rates with a given power budget for transmission and hardware consumption at the eNB. Simulation results demonstrate that employing higher beams increases the side-lobe interference still, the achievable average long-run user rate improves on account of longer sector sojourn time and higher frequency reuse. On the other hand, employing a very narrow beam is also not optimal.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint Beamwidth and Number of Concurrent Beams Estimation in Downlink mmWave Communications\",\"authors\":\"Nancy Varshney, S. De\",\"doi\":\"10.1109/NCC52529.2021.9530054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a sectored-cell framework for mmWave communication. It consists of multiple concurrent beams generated from a partially-connected hybrid precoder at an eNodeB (eNB) to serve a dense user population in urban scenarios. Multiple beams sweep the cell in a round-robin fashion to serve the sectors with fair scheduling opportunities. Each beam serves all the users located within a sector using orthogonal frequency division multiple access. We aim to estimate an optimum beamwidth and an optimum number of beams required to maximize the average of long-run user rates with a given power budget for transmission and hardware consumption at the eNB. Simulation results demonstrate that employing higher beams increases the side-lobe interference still, the achievable average long-run user rate improves on account of longer sector sojourn time and higher frequency reuse. On the other hand, employing a very narrow beam is also not optimal.\",\"PeriodicalId\":414087,\"journal\":{\"name\":\"2021 National Conference on Communications (NCC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC52529.2021.9530054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Beamwidth and Number of Concurrent Beams Estimation in Downlink mmWave Communications
This paper proposes a sectored-cell framework for mmWave communication. It consists of multiple concurrent beams generated from a partially-connected hybrid precoder at an eNodeB (eNB) to serve a dense user population in urban scenarios. Multiple beams sweep the cell in a round-robin fashion to serve the sectors with fair scheduling opportunities. Each beam serves all the users located within a sector using orthogonal frequency division multiple access. We aim to estimate an optimum beamwidth and an optimum number of beams required to maximize the average of long-run user rates with a given power budget for transmission and hardware consumption at the eNB. Simulation results demonstrate that employing higher beams increases the side-lobe interference still, the achievable average long-run user rate improves on account of longer sector sojourn time and higher frequency reuse. On the other hand, employing a very narrow beam is also not optimal.