直流电压作用下小气隙介电性能的优化与预测

A. Maglaras, F. Topalis, L. Maglaras, Konstantina Giannakopoulou, Kyriaki D. Tsilika
{"title":"直流电压作用下小气隙介电性能的优化与预测","authors":"A. Maglaras, F. Topalis, L. Maglaras, Konstantina Giannakopoulou, Kyriaki D. Tsilika","doi":"10.1109/ENERGYCON.2014.6850464","DOIUrl":null,"url":null,"abstract":"The present paper aims to the investigation of the methods used to optimize and predict via simulation the values of the Corona onset voltage, the Corona current and the Breakdown voltage in small rod-plate air gaps when stressed by dc voltage. The main factors which influence greatly the distribution of the electric field in the gap, and hence the above values are the geometry and the selection of grounding and charging of the electrodes, (ground effect), the polarity effect, the gap length, and the Corona effects appearing prior to breakdown. Combining theoretical, simulation and experimental work, it is resulted that: a) The electrode chosen to be ground, strongly influences the distribution of the field and the Corona effects and hence the values of the Corona onset, the Corona current and breakdown voltage. b) Minimum values of the Corona onset voltage and maximum values of the Corona current and the breakdown voltage were defined in relation to the geometry of the gap and in connection to the effects of grounding, polarity and Corona current. c) It is proven that it can be predicted by means of simulation analysis whether an air gap will lead to Corona or breakdown, and it can also be predicted which specific arrangement of a rod-plate air gap must be chosen in order to maximize the Corona current when a voltage of a certain value is applied.","PeriodicalId":410611,"journal":{"name":"2014 IEEE International Energy Conference (ENERGYCON)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and prediction of dielectric behavior of small air gaps stressed by DC voltages\",\"authors\":\"A. Maglaras, F. Topalis, L. Maglaras, Konstantina Giannakopoulou, Kyriaki D. Tsilika\",\"doi\":\"10.1109/ENERGYCON.2014.6850464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper aims to the investigation of the methods used to optimize and predict via simulation the values of the Corona onset voltage, the Corona current and the Breakdown voltage in small rod-plate air gaps when stressed by dc voltage. The main factors which influence greatly the distribution of the electric field in the gap, and hence the above values are the geometry and the selection of grounding and charging of the electrodes, (ground effect), the polarity effect, the gap length, and the Corona effects appearing prior to breakdown. Combining theoretical, simulation and experimental work, it is resulted that: a) The electrode chosen to be ground, strongly influences the distribution of the field and the Corona effects and hence the values of the Corona onset, the Corona current and breakdown voltage. b) Minimum values of the Corona onset voltage and maximum values of the Corona current and the breakdown voltage were defined in relation to the geometry of the gap and in connection to the effects of grounding, polarity and Corona current. c) It is proven that it can be predicted by means of simulation analysis whether an air gap will lead to Corona or breakdown, and it can also be predicted which specific arrangement of a rod-plate air gap must be chosen in order to maximize the Corona current when a voltage of a certain value is applied.\",\"PeriodicalId\":410611,\"journal\":{\"name\":\"2014 IEEE International Energy Conference (ENERGYCON)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Energy Conference (ENERGYCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCON.2014.6850464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCON.2014.6850464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究在直流电压作用下,通过模拟优化和预测小棒板气隙中电晕起始电压、电晕电流和击穿电压值的方法。影响间隙中电场分布并因此产生上述值的主要因素是电极的几何形状、接地和充电方式的选择、(接地效应)、极性效应、间隙长度以及击穿前出现的电晕效应。结合理论、仿真和实验工作,得出:a)选择的接地电极对电场分布和电晕效应有很大影响,从而影响电晕起始值、电晕电流和击穿电压。b)电晕起始电压的最小值、电晕电流和击穿电压的最大值与间隙的几何形状有关,并与接地、极性和电晕电流的影响有关。c)证明了通过仿真分析可以预测气隙是否会导致电晕或击穿,也可以预测在施加一定电压值时,为了使电晕电流最大化,必须选择何种具体的棒板气隙排列方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization and prediction of dielectric behavior of small air gaps stressed by DC voltages
The present paper aims to the investigation of the methods used to optimize and predict via simulation the values of the Corona onset voltage, the Corona current and the Breakdown voltage in small rod-plate air gaps when stressed by dc voltage. The main factors which influence greatly the distribution of the electric field in the gap, and hence the above values are the geometry and the selection of grounding and charging of the electrodes, (ground effect), the polarity effect, the gap length, and the Corona effects appearing prior to breakdown. Combining theoretical, simulation and experimental work, it is resulted that: a) The electrode chosen to be ground, strongly influences the distribution of the field and the Corona effects and hence the values of the Corona onset, the Corona current and breakdown voltage. b) Minimum values of the Corona onset voltage and maximum values of the Corona current and the breakdown voltage were defined in relation to the geometry of the gap and in connection to the effects of grounding, polarity and Corona current. c) It is proven that it can be predicted by means of simulation analysis whether an air gap will lead to Corona or breakdown, and it can also be predicted which specific arrangement of a rod-plate air gap must be chosen in order to maximize the Corona current when a voltage of a certain value is applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bad data validation on the basis of a posteriori analysis Smart grid investment and technology roadmap for power system planning. Case study for a distribution system operator: EAECSA A discussion of reactive power control possibilities in distribution networks dedicated to generation Comparison of voltage control methods for incrementing active power production Calculating negative LMPs from SOCP-OPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1