一种计算词相似度的快速算法

Xingyuan Chen, Xia Yang, Bingjun Su
{"title":"一种计算词相似度的快速算法","authors":"Xingyuan Chen, Xia Yang, Bingjun Su","doi":"10.1109/CIS.2013.92","DOIUrl":null,"url":null,"abstract":"Computing distributional similarity is an effective strategy for finding synonyms. The time complexity of the naive nearest-neighbor approach of computing distributional word similarity is O(n*n*m), it is inefficient for accurately representing synonymy using large corpus. We find a parse property of triple that the growth rate of average triples number of each word leveled off as corpus's size increases. Using this property we design a fast algorithm for computing word similarity whose time complexity is O(n*n). We demonstrate the efficiency of this algorithm based on the English Gig word corpus.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Algorithm of Computing Word Similarity\",\"authors\":\"Xingyuan Chen, Xia Yang, Bingjun Su\",\"doi\":\"10.1109/CIS.2013.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing distributional similarity is an effective strategy for finding synonyms. The time complexity of the naive nearest-neighbor approach of computing distributional word similarity is O(n*n*m), it is inefficient for accurately representing synonymy using large corpus. We find a parse property of triple that the growth rate of average triples number of each word leveled off as corpus's size increases. Using this property we design a fast algorithm for computing word similarity whose time complexity is O(n*n). We demonstrate the efficiency of this algorithm based on the English Gig word corpus.\",\"PeriodicalId\":294223,\"journal\":{\"name\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2013.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算分布相似度是查找同义词的有效策略。朴素近邻法计算分布词相似度的时间复杂度为O(n*n*m),对于使用大型语料库准确表示同义词是低效的。我们发现了三元组的解析特性,即随着语料库规模的增加,每个单词的平均三元组数的增长率趋于平稳。利用这一特性,设计了一种计算词相似度的快速算法,其时间复杂度为O(n*n)。以英语Gig词库为例,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast Algorithm of Computing Word Similarity
Computing distributional similarity is an effective strategy for finding synonyms. The time complexity of the naive nearest-neighbor approach of computing distributional word similarity is O(n*n*m), it is inefficient for accurately representing synonymy using large corpus. We find a parse property of triple that the growth rate of average triples number of each word leveled off as corpus's size increases. Using this property we design a fast algorithm for computing word similarity whose time complexity is O(n*n). We demonstrate the efficiency of this algorithm based on the English Gig word corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Co-op Advertising Analysis within a Supply Chain Based on the Three-Stage Non-cooperate Dynamic Game Model Study on Pseudorandomness of Some Pseudorandom Number Generators with Application The Superiority Analysis of Linear Frequency Modulation and Barker Code Composite Radar Signal The Improvement of the Commonly Used Linear Polynomial Selection Methods A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1