基于轻量级卷积神经网络的皮肤癌图像分类

Talapally Sandeep Kumar, B. Annappa, Shubham Dodia
{"title":"基于轻量级卷积神经网络的皮肤癌图像分类","authors":"Talapally Sandeep Kumar, B. Annappa, Shubham Dodia","doi":"10.1109/INCET57972.2023.10170637","DOIUrl":null,"url":null,"abstract":"Skin is the most powerful shield human organ that protects the internal organs of the human body from external attacks. This important organ is attacked by a diverse range of microbes such as viruses, fungi, and bacteria causing a lot of damage to the skin. Apart from these microbes, even dust plays important role in damaging skin. Every year several people in the world are suffering from skin diseases. These skin diseases are contagious and spread very fast. There are varieties of skin diseases. Thus it requires a lot of practice to distinguish the skin disease by the doctor and provide treatment. In order to automate this process several deep learning models are used in recent past years. This paper demonstrates an efficient and lightweight modified SqueezeNet deep learning model on the HAM10000 dataset for skin cancer classification. This model has outperformed state-of-the-art models with fewer parameters. As compared to existing deep learning models, this SqueezeNet variant has achieved 99.7%, 97.7%, and 97.04% as train, validation, and test accuracies respectively using only 0.13 million parameters.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Skin Cancer Images using Lightweight Convolutional Neural Network\",\"authors\":\"Talapally Sandeep Kumar, B. Annappa, Shubham Dodia\",\"doi\":\"10.1109/INCET57972.2023.10170637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin is the most powerful shield human organ that protects the internal organs of the human body from external attacks. This important organ is attacked by a diverse range of microbes such as viruses, fungi, and bacteria causing a lot of damage to the skin. Apart from these microbes, even dust plays important role in damaging skin. Every year several people in the world are suffering from skin diseases. These skin diseases are contagious and spread very fast. There are varieties of skin diseases. Thus it requires a lot of practice to distinguish the skin disease by the doctor and provide treatment. In order to automate this process several deep learning models are used in recent past years. This paper demonstrates an efficient and lightweight modified SqueezeNet deep learning model on the HAM10000 dataset for skin cancer classification. This model has outperformed state-of-the-art models with fewer parameters. As compared to existing deep learning models, this SqueezeNet variant has achieved 99.7%, 97.7%, and 97.04% as train, validation, and test accuracies respectively using only 0.13 million parameters.\",\"PeriodicalId\":403008,\"journal\":{\"name\":\"2023 4th International Conference for Emerging Technology (INCET)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference for Emerging Technology (INCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCET57972.2023.10170637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10170637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

皮肤是保护人体内部器官免受外部攻击的最强大的盾牌。这个重要的器官受到各种微生物的攻击,如病毒、真菌和细菌,对皮肤造成很大的损害。除了这些微生物,灰尘也会对皮肤造成伤害。世界上每年都有几个人患有皮肤病。这些皮肤病具有传染性,传播速度很快。皮肤病有很多种。因此,医生鉴别皮肤病并提供治疗需要大量的实践。为了使这一过程自动化,近年来使用了几种深度学习模型。本文在HAM10000数据集上展示了一种高效、轻量级的改进的SqueezeNet深度学习模型,用于皮肤癌分类。该模型的性能优于最先进的参数较少的模型。与现有的深度学习模型相比,这个SqueezeNet变体仅使用13万个参数,训练、验证和测试的准确率分别达到99.7%、97.7%和97.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Skin Cancer Images using Lightweight Convolutional Neural Network
Skin is the most powerful shield human organ that protects the internal organs of the human body from external attacks. This important organ is attacked by a diverse range of microbes such as viruses, fungi, and bacteria causing a lot of damage to the skin. Apart from these microbes, even dust plays important role in damaging skin. Every year several people in the world are suffering from skin diseases. These skin diseases are contagious and spread very fast. There are varieties of skin diseases. Thus it requires a lot of practice to distinguish the skin disease by the doctor and provide treatment. In order to automate this process several deep learning models are used in recent past years. This paper demonstrates an efficient and lightweight modified SqueezeNet deep learning model on the HAM10000 dataset for skin cancer classification. This model has outperformed state-of-the-art models with fewer parameters. As compared to existing deep learning models, this SqueezeNet variant has achieved 99.7%, 97.7%, and 97.04% as train, validation, and test accuracies respectively using only 0.13 million parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning-Based Solution for Differently-Abled Persons in The Society CARP-YOLO: A Detection Framework for Recognising and Counting Fish Species in a Cluttered Environment Implementation of Covid patient Health Monitoring System using IoT ESP Tuning to Reduce Auxiliary Power Consumption and Preserve Environment Real-time Recognition of Indian Sign Language using OpenCV and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1