Fraser K. Coutts, K. Thompson, I. Proudler, Stephan Weiss
{"title":"共轭矩阵的限制更新顺序矩阵对角化","authors":"Fraser K. Coutts, K. Thompson, I. Proudler, Stephan Weiss","doi":"10.1109/CAMSAP.2017.8313112","DOIUrl":null,"url":null,"abstract":"A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. This paper introduces a novel restricted update approach for the sequential matrix diagonalisation (SMD) PEVD algorithm, which can be implemented with minimal impact on algorithm accuracy and convergence. We demonstrate that by using the proposed restricted update SMD (RU-SMD) algorithm instead of SMD, PEVD complexity and execution time can be significantly reduced. This reduction impacts on a number of broadband multichannel problems.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Restricted update sequential matrix diagonalisation for parahermitian matrices\",\"authors\":\"Fraser K. Coutts, K. Thompson, I. Proudler, Stephan Weiss\",\"doi\":\"10.1109/CAMSAP.2017.8313112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. This paper introduces a novel restricted update approach for the sequential matrix diagonalisation (SMD) PEVD algorithm, which can be implemented with minimal impact on algorithm accuracy and convergence. We demonstrate that by using the proposed restricted update SMD (RU-SMD) algorithm instead of SMD, PEVD complexity and execution time can be significantly reduced. This reduction impacts on a number of broadband multichannel problems.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Restricted update sequential matrix diagonalisation for parahermitian matrices
A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. This paper introduces a novel restricted update approach for the sequential matrix diagonalisation (SMD) PEVD algorithm, which can be implemented with minimal impact on algorithm accuracy and convergence. We demonstrate that by using the proposed restricted update SMD (RU-SMD) algorithm instead of SMD, PEVD complexity and execution time can be significantly reduced. This reduction impacts on a number of broadband multichannel problems.