不确定性环境下的模糊q -学习:开发一个智能的吃豆人代理

L. DeLooze, Wesley R. Viner
{"title":"不确定性环境下的模糊q -学习:开发一个智能的吃豆人代理","authors":"L. DeLooze, Wesley R. Viner","doi":"10.1109/CIG.2009.5286478","DOIUrl":null,"url":null,"abstract":"This paper reports the results from training an intelligent agent to play the Ms. Pac-Man video game using variations of a fuzzy Q-learning algorithm. This approach allows us to address the nondeterministic aspects of the game as well as finding a successful self-learning or adaptive playing strategy. The strategy presented is a table based learning strategy, in which the intelligent agent analyzes the current situation of the game, stores various membership values for each of the several contributors to the situation (distance to closest pill, distance to closest power pill, and distance to closest ghost), and makes decisions based on these values.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Fuzzy Q-learning in a nondeterministic environment: developing an intelligent Ms. Pac-Man agent\",\"authors\":\"L. DeLooze, Wesley R. Viner\",\"doi\":\"10.1109/CIG.2009.5286478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the results from training an intelligent agent to play the Ms. Pac-Man video game using variations of a fuzzy Q-learning algorithm. This approach allows us to address the nondeterministic aspects of the game as well as finding a successful self-learning or adaptive playing strategy. The strategy presented is a table based learning strategy, in which the intelligent agent analyzes the current situation of the game, stores various membership values for each of the several contributors to the situation (distance to closest pill, distance to closest power pill, and distance to closest ghost), and makes decisions based on these values.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"301 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文报告了使用模糊q -学习算法的变体训练智能代理玩吃豆人女士视频游戏的结果。这种方法使我们能够解决游戏的不确定性方面,并找到一种成功的自我学习或适应性玩法策略。所呈现的策略是一种基于表格的学习策略,其中智能代理分析游戏的当前情况,为每个情况的几个参与者存储各种成员值(到最近药丸的距离,到最近能量药丸的距离,到最近幽灵的距离),并根据这些值做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy Q-learning in a nondeterministic environment: developing an intelligent Ms. Pac-Man agent
This paper reports the results from training an intelligent agent to play the Ms. Pac-Man video game using variations of a fuzzy Q-learning algorithm. This approach allows us to address the nondeterministic aspects of the game as well as finding a successful self-learning or adaptive playing strategy. The strategy presented is a table based learning strategy, in which the intelligent agent analyzes the current situation of the game, stores various membership values for each of the several contributors to the situation (distance to closest pill, distance to closest power pill, and distance to closest ghost), and makes decisions based on these values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1