{"title":"跨多个暗网论坛的可扩展情感分类","authors":"David Zimbra, Hsinchun Chen","doi":"10.1109/ISI.2012.6284095","DOIUrl":null,"url":null,"abstract":"This study examines several approaches to sentiment classification in the Dark Web Forum Portal, and opportunities to transfer classifiers and text features across multiple forums to improve scalability and performance. Although sentiment classifiers typically perform poorly when transferred across domains, experimentation reveals the devised approaches offer performance equivalent to the traditional forum-specific approach in classification in an unknown domain. Furthermore, incorporating the text features identified as significant indicators of sentiment in other forums can greatly improve the classification accuracy of the traditional forum-specific approach.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Scalable sentiment classification across multiple Dark Web Forums\",\"authors\":\"David Zimbra, Hsinchun Chen\",\"doi\":\"10.1109/ISI.2012.6284095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines several approaches to sentiment classification in the Dark Web Forum Portal, and opportunities to transfer classifiers and text features across multiple forums to improve scalability and performance. Although sentiment classifiers typically perform poorly when transferred across domains, experimentation reveals the devised approaches offer performance equivalent to the traditional forum-specific approach in classification in an unknown domain. Furthermore, incorporating the text features identified as significant indicators of sentiment in other forums can greatly improve the classification accuracy of the traditional forum-specific approach.\",\"PeriodicalId\":199734,\"journal\":{\"name\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2012.6284095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable sentiment classification across multiple Dark Web Forums
This study examines several approaches to sentiment classification in the Dark Web Forum Portal, and opportunities to transfer classifiers and text features across multiple forums to improve scalability and performance. Although sentiment classifiers typically perform poorly when transferred across domains, experimentation reveals the devised approaches offer performance equivalent to the traditional forum-specific approach in classification in an unknown domain. Furthermore, incorporating the text features identified as significant indicators of sentiment in other forums can greatly improve the classification accuracy of the traditional forum-specific approach.