介绍一种基于模型的非线性系统学习控制软件:RoFaLT

A. Steinhauser, J. Swevers
{"title":"介绍一种基于模型的非线性系统学习控制软件:RoFaLT","authors":"A. Steinhauser, J. Swevers","doi":"10.23919/ECC.2018.8550394","DOIUrl":null,"url":null,"abstract":"This paper introduces ROFALT, an open-source, model-based iterative learning control (ILC) tool for nonlinear systems, that aims at closing the gap between the theory of nonlinear ILC and successful applications. Providing a simple yet powerful syntax in MATLAB, ROFALT supports all phases of the design of a nonlinear ILC—from modeling, tuning and execution, to analysis. The theoretical basis is an optimization-based two-step approach that allows an easy trade-off between fast convergence and robustness for generic nonlinear systems. To demonstrate the efficiency of the developed tool, a simulation study on an overhead crane is performed, where a model with introduced parameter deviations is used to iteratively learn the open-loop control inputs. Special attention is paid to the comparison of different possible ways to realize the learning effect and the resulting performance. Moreover, the simplicity of considering constraints and their compliance is demonstrated, while fast convergence is observed.","PeriodicalId":222660,"journal":{"name":"2018 European Control Conference (ECC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing a Model-based Learning Control Software for Nonlinear Systems: RoFaLT\",\"authors\":\"A. Steinhauser, J. Swevers\",\"doi\":\"10.23919/ECC.2018.8550394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces ROFALT, an open-source, model-based iterative learning control (ILC) tool for nonlinear systems, that aims at closing the gap between the theory of nonlinear ILC and successful applications. Providing a simple yet powerful syntax in MATLAB, ROFALT supports all phases of the design of a nonlinear ILC—from modeling, tuning and execution, to analysis. The theoretical basis is an optimization-based two-step approach that allows an easy trade-off between fast convergence and robustness for generic nonlinear systems. To demonstrate the efficiency of the developed tool, a simulation study on an overhead crane is performed, where a model with introduced parameter deviations is used to iteratively learn the open-loop control inputs. Special attention is paid to the comparison of different possible ways to realize the learning effect and the resulting performance. Moreover, the simplicity of considering constraints and their compliance is demonstrated, while fast convergence is observed.\",\"PeriodicalId\":222660,\"journal\":{\"name\":\"2018 European Control Conference (ECC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.2018.8550394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2018.8550394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了ROFALT,一个开源的、基于模型的非线性系统迭代学习控制(ILC)工具,旨在缩小非线性ILC理论与成功应用之间的差距。在MATLAB中提供简单而强大的语法,ROFALT支持非线性ilc设计的所有阶段-从建模,调优和执行到分析。理论基础是一种基于优化的两步方法,它允许在快速收敛和鲁棒性之间轻松权衡一般非线性系统。为了证明所开发工具的有效性,对桥式起重机进行了仿真研究,其中使用引入参数偏差的模型迭代学习开环控制输入。特别注意了实现学习效果的不同可能方式和由此产生的性能的比较。此外,还证明了考虑约束及其遵从性的简单性,并观察到快速收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introducing a Model-based Learning Control Software for Nonlinear Systems: RoFaLT
This paper introduces ROFALT, an open-source, model-based iterative learning control (ILC) tool for nonlinear systems, that aims at closing the gap between the theory of nonlinear ILC and successful applications. Providing a simple yet powerful syntax in MATLAB, ROFALT supports all phases of the design of a nonlinear ILC—from modeling, tuning and execution, to analysis. The theoretical basis is an optimization-based two-step approach that allows an easy trade-off between fast convergence and robustness for generic nonlinear systems. To demonstrate the efficiency of the developed tool, a simulation study on an overhead crane is performed, where a model with introduced parameter deviations is used to iteratively learn the open-loop control inputs. Special attention is paid to the comparison of different possible ways to realize the learning effect and the resulting performance. Moreover, the simplicity of considering constraints and their compliance is demonstrated, while fast convergence is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing Communication Topologies for Optimal Synchronization Trajectories of HomogeneousLinear Multi-Agent Systems Inner-Loop Reference Governor Design with an Application to Human-in-the-Loop Control Quadcopter-performed cinematographic flight plans using minimum jerk trajectories and predictive camera control Model Predictive Direct Switching Control for Multi-Phase Permanent-Magnet Synchronous Motors On-line fuel-efficiency optimization of Diesel engines using constrained multivariable extremum-seeking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1